Antibody Responses in Patients with Rubella Infection
Determined by Passive Hemagglutination, Hemagglutination
Inhibition, Complement Fixation, and Solid-Phase
Radioimmunoassay Tests

OLLI H. MEURMAN
Department of Virology, University of Turku, SF-20520 Turku 52, Finland

Received for publication 11 October 1977

Antibody responses in serial serum specimens collected from 31 patients with
an acute rubella infection were determined by passive hemagglutination (PHA),
hemagglutination inhibition (HI), complement fixation (CF), radioimmunoassay
(RIA) immunoglobulin G (IgG), and RIA immunoglobulin M (IgM) tests to
evaluate the effectiveness of these tests in diagnosing a recent infection. The HI,
RIA IgG, and RIA IgM antibodies appeared almost simultaneously and reached
the maximum level about 1 week after the onset of rash. Compared to these, the
CF antibodies developed only slightly later, whereas the development of the
PHA antibodies was much more delayed. The RIA IgM response was shown to
be transient, lasting approximately 1.5 to 2.5 months postinfection. The results
of this study indicate that demonstration of specific IgM antibodies is the best
method for diagnosing a recent infection, one within 2 months after the onset of
the illness. If an IgM test is not available, a combination of the HI and PHA
tests is recommended.

The serological diagnosis of rubella virus infections is generally based on hemagglutination
inhibition (HI) and complement fixation (CF) tests. These conventional tests have, however,
some serious limitations, and a constant need for better laboratory tests has been recognized.
During the last few years, several methods based on a separate determination of immunoglobulin
G (IgG) and immunoglobulin M (IgM) class antibodies have been proposed for use in rubella
diagnosis (4, 7, 17). These include the sensitive solid-phase radioimmunoassay (RIA) method
recently developed in our laboratory (8, 11). In addition, a rubella antibody test based on the
passive hemagglutination (PHA) reaction has recently been developed (Rubacell, Abbott Labo-

ratories).

In this study, the antibody responses in serial serum specimens collected from 31 young adult
patients with a postnatal rubella infection have been determined by PHA, HI, CF, RIA IgG,
and RIA IgM tests, to evaluate the effectiveness of these tests in diagnosing a recent rubella
infection.

MATERIALS AND METHODS

Serum specimens. A total of 144 serial specimens
from 31 patients with acute rubella infection were
tested. The patients were young, male army trainees
with a mean age of 20 years, who contracted the
infection during rubella epidemics occurring in an
army base in southwest Finland. The patients were
followed 29 to 200 days postinfection, and from each
patient three to six serial serum specimens were col-
lected. The sera were stored at −20°C until tested.

PHA test. PHA antibodies were detected by a
commercially available test, Rubacell (Abbott Lab-
oratories, North Chicago, Ill.). In this test, human
erthrocytes, stabilized with formaldehyde-pyruvic
aldehyde and sensitized with a soluble rubella virus
antigen, agglutinates in the presence of a specific
antibody (14). The tests were done according to the
instructions given by the manufacturer.

HI test. HI tests were performed by microtechnique
according to the modified test used at the Center for
Disease Control, Atlanta, Ga. (16). Rubella hemagglu-
tinin was prepared in BHK-21/13S cells maintained
in a medium containing bovine serum albumin and
no serum (6).

CF test. For CF tests, rubella antigen was prepared
using the alkaline extraction procedure described by
Halonen et al. (5). A standard microtechnique (1) was
used.

RIA test. The details of the methods used have been
described previously (8, 11). Briefly, purified
rubella virus antigen was adsorbed onto polystyrene
balls, and serum antibodies binding to the antigen
were detected by 125I-labeled anti-human-gamma
and anti-human-mu immunoglobulins.

RESULTS

General patterns of the antibody responses as
determined by the different tests are shown in
Fig. 1, and in Table 1, the individual titer values of four representative patients are given.

The delayed appearance of PHA antibodies is illustrated in Fig. 1a. The earliest positive specimen detected (titer 13.5) was taken 15 days postinfection, and the latest negative specimen was detected 21 days postinfection. The titers then increased constantly, but at a decreasing rate, up to the end of the follow up. A significant (fourfold or greater) rise in the antibody titer was demonstrated in all patients before the end of week 9 postinfection. A steady or decreasing antibody level was not demonstrated in any patient during the 200-day study period.

The HI antibodies developed rapidly (Fig. 1b) and were detectable in all specimens taken on day 4 or later after the onset of rash. The maximum titers were usually reached within 1 week, after which a slow but constant decrease in titers was noticed. A significant rise in HI titer was demonstrated in all but two patients. The first serum specimens of these two patients were taken 3 and 4 days postinfection, respectively.

The appearance of CF antibodies (Fig. 1c) was somewhat delayed compared to that of the HI antibodies, but more rapid than the development of the PHA antibodies. CF antibodies were detected in all specimens taken on day 9 or later postinfection. A significant rise in CF titer was demonstrated in all but one patient, who also failed to show a significant increase in HI titer. After week 1 postinfection, when the maximal HI antibody response was already reached, a significant rise in CF antibody titer was demonstrated in 7 out of 26 patients from whom a specimen taken 6 to 10 days after the onset of rash was obtained. After reaching the

Table 1. Rubella PHA, HI, CF, RIA IgG, and RIA IgM antibody titers in a series of serum specimens taken from four with rubella

<table>
<thead>
<tr>
<th>Patient</th>
<th>Days after onset of rash</th>
<th>PHA</th>
<th>HI</th>
<th>CF</th>
<th>RIA IgG</th>
<th>RIA IgM</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.M.</td>
<td>1 <13.5 4 16 <16 16</td>
<td></td>
<td>8</td>
<td>16000 64000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 <13.5 256 4 16000 64000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 <13.5 256 16 16000 32000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 13.5 256 16 16000 8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>58 27 256 16 8000 <16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>170 432 128 16 4096 <16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K.V.</td>
<td>2 <13.5 128 4 <16 16000</td>
<td></td>
<td>8</td>
<td>16000 64000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 <13.5 512 16 16000 64000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 <13.5 256 16 16000 32000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33 13.5 256 16 16000 8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>58 54 256 16 16000 256</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>171 432 128 16 4096 <16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.H.</td>
<td>2 <13.5 128 4 <16 16000 16</td>
<td></td>
<td>9</td>
<td>16000 16000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 <13.5 512 64 32000 1024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59 108 128 32 32000 <16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>184 432 128 16 8000 <16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N.H.</td>
<td>2 <13.5 16 4 <16 16000 1024</td>
<td></td>
<td>8</td>
<td><16 32000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 <13.5 512 8 8000 32000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29 54 256 8 8000 8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>162 216 64 8 2048 <16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Development of PHA, HI, CF, RIA IgG, and RIA IgM antibodies in serial serum specimens collected from 31 young male patients with acute rubella infection. Geometric mean (solid line) and range of titers (bars) are shown.
maximum level, the CF antibodies remained quite stable up to the end of the study period. RIA IgG antibodies developed rapidly (Fig. 1d), almost parallel to the HI antibodies, and were detected in all specimens taken on day 3 or later postinfection. A relatively stable antibody level was reached at about 1 week postinfection. Titer increases were, however, noted up to month 2 postinfection, with slow but constant decrease after that time.

RIA IgM antibodies were detectable in all specimens taken between 4 and 37 days after the onset of rash. They increased parallel to the HI and RIA IgG antibodies up to about day 10 postinfection (Fig. 1e), after which time the titers decreased rapidly. The first negative convalescent specimen was taken at day 48 postinfection, and the latest positive specimen was taken at day 59 postinfection.

DISCUSSION

The rubella HI antibodies develop rapidly during the first days after the onset of rash (10), and the appearance of the CF antibodies, measured with crude CF antigen, is only slightly slower (2, 5). Therefore, a limitation of these two tests in the diagnosis of a recent infection is that a significant rise in the antibody titers can be demonstrated only if the first serum specimen is taken within a few days after the onset of rash. In this study, only 7 out of 26 cases of an acute rubella infection would have been diagnosed with these tests if the first serum specimen were taken on day 6 postinfection or later. The same limitation also applies to the RIA IgG antibodies, although they develop, on an average, somewhat more slowly than the HI antibodies. This can, for the most part, be explained by the fact that a great portion of the early HI antibodies are of IgM class (12, see also data for patients K.V. and N.H. in Table 1).

The PHA antibodies appeared slowly, about 2 to 3 weeks later than the other antibodies studied. Therefore, a significant rise in PHA antibody titer between the first and subsequent serum specimens was demonstrable even if the first specimen was not taken until 1 to 2 months postinfection. Moreover, since the PHA antibodies are persistent, comparable to the HI antibodies in measuring rubella immunity (14), a demonstration of HI antibodies in the absence of PHA antibodies is pathognomonic to the first 2 to 3 weeks after rubella infection, and would thus enable the diagnosis of a recent infection to be made from a single serum specimen.

Delayed rubella antibody responses resembling those of the PHA antibodies have been demonstrated previously by the CF test by using a soluble hemagglutinin-free antigen (18), the gel-precipitation tests (9, 13, 15), the platelet aggregation test (18), and immunoelectro-osmophoresis (3). None of these tests was, however, practical enough to be widely used in rubella diagnosis, whereas the Rubacell test can be easily adopted by any virus laboratory in which HI tests are performed.

The IgM antibody response after uncomplicated rubella infection is transient, and the demonstration of specific IgM antibodies provides a suitable tool for the diagnosis of a recent infection (7, 10a, 17). Thus, the use of an IgM test, together with an IgG antibody test mainly for immune status determinations, obviously caters best for the present needs in rubella serology. However, the separate demonstration of IgM and IgG antibodies by RIA, or by any other reliable method, requires special equipment and expertise, which limits the general use of these methods in the near future.

The results obtained here indicate that, although the Rubacell test is now marketed only for immune status determinations, it could be valuable also in the diagnosis of a recent infection. In fact, for laboratories that cannot adopt any specialized IgM rubella antibody test at the moment, a combination of the PHA and HI tests would be the easiest way to improve considerably the efficacy of rubella diagnosis, particularly in cases where the first serum specimen is taken late in the illness.

ACKNOWLEDGMENTS

I thank John W. Safford, Jr., Abbott Laboratories, for his support and the Rubacell test kits. I gratefully acknowledge the skillful technical assistance of Leena Soini, Anja Kopra, and Auli Luhtala.

This study was supported by a grant from the Research and Science Foundation of Lääke Oy, the Emil and Birde Maumula Foundation, and the Sigrid Juselius Foundation.

LITERATURE CITED

