Immunogenicity of Purified Venezuelan Equine Encephalitis Virus Inactivated by Ionizing Radiation

JACK GRUBER1

Medical Sciences Laboratory, Fort Detrick, Frederick, Maryland 21701

Received for publication 13 October 1970

Purified and concentrated Venezuelan equine encephalitis (VEE) virus derived from tissue cultures, rendered noninfectious by ionizing radiation with retention of in vitro serological activity, also retained a high level of immunogenicity. In mice, fluid vaccines afforded excellent protection against lethal challenge with homologous Trinidad strain VEE virus. A direct relationship was observed between concentration of vaccine or number of injections and survival. One intraperitoneal inoculation of undiluted vaccine protected essentially all mice challenged 21 days later with 100,000 mouse intraperitoneal LD50 of virus. Similarly, mice receiving three injections of vaccines diluted 1:100 were completely protected. Noninfectious VEE virus preparations combined with adjuvant 65, a nontoxic metabolizable vehicle, were likewise very effective in protecting mice immunized intraperitoneally or subcutaneously against lethal challenge. Guinea pigs immunized subcutaneously with adjuvant-combined vaccine survived lethal challenge of 1,000,000 guinea pig intraperitoneal LD50.

Existing vaccines for the protection of laboratory personnel potentially exposed to Venezuelan equine encephalitis (VEE) virus include several Formalin-inactivated preparations (8, 10; Smith et al., Bacteriol. Proc., p. 59, 1954.) and a live, attenuated vaccine (2). Unfortunately, the Formalin-treated VEE vaccines either contain residual infectious virus (15) or are so drastically treated as to confer inadequate protection (2, 7). The live, attenuated vaccine, although conferring good protection in man (7), causes a significant incidence of undesirable clinical manifestations (1). An experimental tissue culture vaccine inactivated by ionizing radiation was recently described (13).

In studies to develop a more effective nonviable VEE vaccine, we have investigated the applicability of two approaches not previously utilized in conjunction: purification and concentration of virus by diethylaminoethyl (DEAE) cellulose chromatography and inactivation by ionizing radiation. The procedure proved applicable to obtaining purified and inactivated VEE virus preparations that retained significant in vitro serological reactivity (4). The capability of these serologically active noninfectious virus preparations to confer protection in animals was investigated, and the results are presented in this report.

MATERIALS AND METHODS

Virus. The Trinidad strain of VEE virus, originally isolated in guinea pigs from a donkey brain (9), was used. It had been passage 13 times in chicken embryos when it was obtained through the courtesy of our colleague William P. Allen. Working seeds for these studies were prepared from a second suckling mouse brain passage as 10% suspensions of infected suckling mouse brains in 7.5% bovine serum albumin-borated saline.

 Infectivity and antigenicity determinations. Assays for virus infectivity were performed by plaque titration in 24-hr chick embryo monolayer tissue cultures (CETC) and by titration of lethality in 10- to 12-g weanling mice. Samples of irradiated virus that failed to produce plaques in tissue culture and were non-lethal for weanling mice after joint intracerebral-intraperitoneal inoculation (0.03 and 0.1 ml) were titrated in suckling mice for residual live virus by a combination intracerebral and intraperitoneal inoculation of 0.02 and 0.03 ml, respectively (12). Fifty per cent lethal dose end points (LD50) were calculated by the method of Reed and Muench (11). Assays for viral hemagglutinins (HA) and complement-fixing (CF) antigens were performed using microtiter methods (3, 14). Goose erythrocytes, at pH 5.8, were used in HA tests, and the Center for Disease Control Laboratory

1 Present address: Viral Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Md. 20014.
Branch Complement Fixation (LBCF) procedure was employed in CF tests (16).

Tissue culture. VEE virus was grown in 24-hr chick embryo monolayer tissue culture in a medium consisting of 0.5% lactalbumin hydrolysate, 0.1% yeast extract, 10% calf serum, and 0.14% sodium bicarbonate in Hanks balanced salt solution. Infected supernatant fluids were harvested by aspiration at 18 to 20 hr postinfection, and tissue culture cellular debris was removed by slow-speed centrifugation. Prior to chromatography the clarified virus preparations were dialyzed for 18 hr at 5°C against 10 volumes of water to decrease their salt concentration. This procedure did not materially decrease VEE plaque titer or the reactivity of the viral antigen in vitro.

Purification and concentration. VEE virus was purified and concentrated by chromatography of infected CETC supernatant fluids on DEAE cellulose columns (4). After the removal of tissue culture components with 0.01 M NaCl, adsorbed virus was specifically eluted with a 0.7 M tris(hydroxymethyl)aminomethane (Tris)-succinate-salt buffer (TSS), at pH 10. One hundred per cent of the input virus infectivity and viral antigenicity was usually recovered after chromatography. Further concentration and purification was obtained by sedimentation of pooled column eluates on 50% sucrose cushions.

Irradiation. Purified VEE virus vaccines were inactivated by irradiation at the National Bureau of Standards through the courtesy of Daniel W. Brown. Suspensions of virus were exposed to gamma radiation from a cobalt-60 source at a dose rate of 7 × 10^6 r per min. The virus preparations were irradiated in Wheaton glass serum bottles fitted with flange-type rubber stoppers. Vaccines were kept frozen with dry ice during irradiation to minimize indirect radiation effects and were held in the frozen state until tested for immunogenicity.

Vaccines. Vaccines were prepared from purified VEE virus recovered after chromatographic purification and sucrose cushion sedimentation. Prior to inactivation the virus preparations were diluted 1:4 in either 0.66% L-histidine (free base in borate saline, pH 9.0) or in borate saline alone. Vaccine preparations were irradiated in the frozen state as described above and virus inactivation was verified by tissue culture and animal assay. Details concerning the number of injections, route, volume, and concentration of the individual fluid vaccines are described below. Combination vaccines of virus and adjuvant 65, a mixture of 86% peanut oil, 10% Arlacel A (mannide monooctate), and 4% aluminum monostearate (5), were also prepared. These vaccines were prepared by combining equal volumes of inactivated fluid vaccines with nonirradiated sterile adjuvant 65. Immediately before animal inoculation the frozen fluid vaccines were thawed and emulsions were prepared by repeatedly drawing the mixture of vaccine and adjuvant through a 15-gauge needle.

RESULTS

Inactivation, safety, sterility. Previous reports from this laboratory demonstrated that chromatographically purified VEE virus is inactivated by exposure to 6 × 10^6 gamma radiation without significant loss of in vitro antigenicity (4). This method and dose of radiation were used to inactivate the vaccines used in this investigation. The inactivation of virus preparations typically obtained is indicated in Table 1. As reported previously, inactivation of infectivity was linear and complete at 6 × 10^6; in contrast, both HA and CF in vitro antigenicities were usually fully retained.

All the vaccines examined were prepared from chromatographed virus preparations of similar infectivity levels. Table 2 lists the seven vaccines studied, their initial infectious virus content, and the HA and CF antigen activity retained after inactivation. All the vaccines tested were comparable in initial viral infectivity titers and viral antigen content.

<p>| TABLE 1. Effects of ionizing radiation on infectivity and serological activity of purified VEE virus |
|-----|-----|-----|-----|</p>
<table>
<thead>
<tr>
<th>10^6 r</th>
<th>Log_{10} PFU/ml</th>
<th>HA titer</th>
<th>CF titer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.6</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>6.7</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>4.4</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>3.4</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td><1.0</td>
<td>128</td>
<td>32</td>
</tr>
</tbody>
</table>

* Plaque-forming units in chick embryo monolayer tissue cultures.
* Agglutination of goose erythrocytes at pH 5.8; 0.05 ml volume.
* Laboratory Branch Complement Fixation procedure; 0.025 ml.

TABLE 2. Infectivity and in vitro antigenicity of irradiated VEE virus vaccines

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Pre-irradiation infectivity</th>
<th>Postirradiation infectivity</th>
<th>HA</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFS</td>
<td>9.2</td>
<td>None</td>
<td>512</td>
<td>64</td>
</tr>
<tr>
<td>IFH</td>
<td>9.2</td>
<td>None</td>
<td>1024</td>
<td>64</td>
</tr>
<tr>
<td>IIFS</td>
<td>8.9</td>
<td>None</td>
<td>512</td>
<td>32</td>
</tr>
<tr>
<td>IIIFH</td>
<td>9.0</td>
<td>None</td>
<td>512</td>
<td>32</td>
</tr>
<tr>
<td>IAS</td>
<td>9.0</td>
<td>None</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>IIAH</td>
<td>8.8</td>
<td>None</td>
<td>256</td>
<td>64</td>
</tr>
<tr>
<td>IIIAH</td>
<td>9.2</td>
<td>None</td>
<td>1024</td>
<td>128</td>
</tr>
</tbody>
</table>

* Log_{10} plaque-forming units/ml.
* All vaccines exposed to 6 × 10^6.
* Infectivity for tissue culture or lethality for weanling and suckling mice.
volume was used for these safety tests. None of the vaccines produced plaques in tissue culture after inoculation with 10⁰ to 10⁻² diluted material. Both 21-day weanling mice and 1- to 5-day suckling mice survived inoculation with 10⁰ to 10⁻² diluted vaccines. With the later vaccines, the weanling and suckling mice received intracerebral-intraperitoneal injections. None of the surviving mice showed any signs of specific illness, and all animals were observed for at least 14 days. With the last vaccine, guinea pigs were employed as a test animal, and no deaths resulted from inoculation of undiluted irradiated material. No residual live virus was detected by any of the tests employed.

The irradiated vaccines were tested for the presence of bacteria by inoculation of fluid thioglycollate broth and Brain Heart Infusion agar media. Incubation was performed at both 37 C and at room temperature (22 to 25 C). All tests showed the vaccines to be sterile.

Fluid vaccines. Initial studies of the immunogenicity of DEAE cellulose column-purified and concentrated VEE virus were performed with irradiated vaccines without adjuvant. Two fluid vaccines of virus irradiated in borate saline (IFS) or 0.5% histidine (IFH) were tested for their ability to confer protection in mice. Eighteen groups of 8 to 10 (10 to 12 g) male weanling mice were immunized with one, two, or three injections of one of three concentrations of IFS or IFH vaccine. Immunizations were made with 0.2 ml of vaccine by the intraperitoneal route; the multiple inoculations were given at 7-day intervals. Protection assays were performed by intraperitoneal challenge of the injected mice with 5,000 MIPLD₉₀ of Trinidad strain VEE virus 21 days after the last immunizing injection. Nonimmunized control mice of the same age and sex were challenged simultaneously, and similar mice were also used to titrate the challenge suspension. The results are presented in Table 3. Both fluid vaccines afforded excellent protection for mice. A direct relationship was observed between concentration of vaccine or number of injections and survival. One immunizing injection of undiluted vaccine (saline or histidine) resulted in survival of all challenged mice. Similarly, three injections of the vaccines diluted as much as 1:100 also afforded considerable protection. Mice receiving one injection of vaccine diluted 1:100 failed to survive challenge. The extent of protection conferred by intermediate dilutions of the vaccines was a function of the number of immunizing injections. At this challenge level the diluted histidine vaccine appeared to confer somewhat better protection than the saline vaccine.

Further immunogenicity studies in mice were conducted with additional saline (IFS) and histidine (IIFH) fluid vaccines derived from an independent tissue culture harvest, column purification, and inactivation. The groups of mice, the dilutions of vaccines, and the number of immunizing injections used were as noted above. In this study, however, a 0.3-ml volume of vaccine was used for immunization. Protection was assayed by intraperitoneal inoculation of 100,000 MIPLD₉₀ of Trinidad strain VEE virus 21 days after the last injection. The results are presented in Table 4. Despite the higher challenge dose used, the high level of protection observed with the previous vaccines was again obtained. Mice receiving three injections of either vaccine diluted 1:100 were completely protected. Mice injected once with undiluted vaccine were similarly protected. A dose response relationship was again

Table 3. Effect of VEE fluid vaccine concentration and number of injections on survival of mice after challenge

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Concén</th>
<th>Survival (%) with</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>One injection</td>
</tr>
<tr>
<td>IFS</td>
<td>10⁰</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>10⁻¹</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>10⁻²</td>
<td>0</td>
</tr>
<tr>
<td>IFH</td>
<td>10⁰</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>10⁻¹</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>10⁻²</td>
<td>0</td>
</tr>
</tbody>
</table>

* Intrapерitoneal challenge with 5,000 MIPLD₉₀ of Trinidad strain VEE virus. None of 10 non-immunized control mice survived simultaneous challenge.

Table 4. Effect of VEE fluid vaccine concentration and number of injections on survival of mice after challenge

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Concén</th>
<th>Survival (%) with</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>One injection</td>
</tr>
<tr>
<td>IIFS</td>
<td>10⁰</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>10⁻¹</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>10⁻²</td>
<td>0</td>
</tr>
<tr>
<td>IIFH</td>
<td>10⁰</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>10⁻¹</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>10⁻²</td>
<td>0</td>
</tr>
</tbody>
</table>

* Intrapерitoneal challenge with 100,000 MIPLD₉₀ of Trinidad strain VEE virus. None of 10 control mice survived simultaneous challenge.
noted, and the protection afforded by intermediate dilutions of the vaccines was a function of the number of immunizations. In contrast to the previous study, both diluted vaccines appeared to confer similar protection.

Vaccines with adjuvant. The effectiveness of these nonviable purified VEE virus preparations in combination with adjuvant was investigated. In an initial study, seven 10- to 12-g weanling mice were inoculated intraperitoneally with 0.5 ml of an emulsion of equal parts of fluid (saline) vaccine and adjuvant 65 (vaccine IAS). Twenty-one days later they were challenged with 5,000 MIPLD₅₀ of Trinidad strain VEE virus. The combination vaccine protected all immunized mice. All nonimmunized mice and control mice receiving adjuvant 65 alone failed to survive simultaneous challenge.

In a more extensive study, two groups of 25 adult (18 to 20 g) mice were immunized via the subcutaneous route with either one or two injections of vaccine combined with adjuvant (IIAH). As before, the combination vaccine consisted of an emulsion of equal parts of fluid (histidine) vaccine and adjuvant 65. The fluid vaccine used in this study was the fourth vaccine derived from an independent tissue culture harvest, column purification, and inactivation. The volume of combined vaccine injected was 0.5 ml, and the multiple injections were 28 days apart. Immunizations were spaced so that both groups of mice were challenged simultaneously. Protection was assayed by intraperitoneal injection of 100,000 MIPLD₅₀ of Trinidad strain VEE virus 21 days after the last immunizing injection. Results are presented in Table 5. The combination vaccine afforded the mice excellent protection. All 25 mice that received two immunizations and 24 of the 25 mice that were inoculated only once survived challenge. Furthermore, none of the 49 surviving mice demonstrated any signs of illness. In contrast, all nonimmunized control mice and mice injected with adjuvant 65 alone failed to survive simultaneous challenge.

Immunization of guinea pigs. To determine further the protection conferred by these adjuvant-combined nonviable VEE vaccines, immunogenicity studies were extended to include the guinea pig. This species was selected because it made available for further serological and pathological studies a 10-fold larger animal and also because of the guinea pig's marked sensitivity to lethal VEE virus infection. Two groups of 15 young adult guinea pigs (250 to 300 g) were immunized by one or two subcutaneous inoculations of 0.5 ml of a new adjuvant-combined vaccine (IIAH). The fluid-virus portion of this vaccine represented the fifth independent growth, purification, and inactivation of VEE virus. Multiple injections were spaced 28 days apart, and immunizations were scheduled so that both groups of guinea pigs were challenged at the same time. Immunogenicity was determined by protection from a lethal intraperitoneal challenge of 1,000,000 GPIPLD₅₀ of Trinidad strain VEE virus 21 days after the last immunizing injection. Results are given in Table 6. The combination vaccine completely protected the guinea pigs. Despite the massive challenge employed, all 30 immunized animals survived, regardless of whether they received one or two immunizing injections. None of these animals showed any indication of illness throughout the postchallenge observation period. In contrast, nonimmunized control guinea pigs and guinea pigs receiving adjuvant 65 alone showed signs of nervous system involvement 3 to 5 days after simultaneous challenge, and all died early in the observation period.

DISCUSSION

The development of highly immunogenic non-reactogenic virus vaccines with increased specific

Table 5. Protection of mice immunized with purified and inactivated VEE virus combined with adjuvant 65^a

<table>
<thead>
<tr>
<th>Inoculum</th>
<th>One vaccine injection</th>
<th>Two vaccine injections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alive/total</td>
<td>Survivval (%)</td>
</tr>
<tr>
<td>IIAH vaccine</td>
<td>24/25</td>
<td>96</td>
</tr>
<tr>
<td>Adjuvant 65 only</td>
<td>0/8</td>
<td>0</td>
</tr>
<tr>
<td>None</td>
<td>0/32</td>
<td>--</td>
</tr>
</tbody>
</table>

^a Adult male mice, 18 to 20 g. Intraperitoneal challenge with 100,000 MIPLD₅₀ of Trinidad strain VEE virus.

Table 6. Protection of guinea pigs immunized with purified and inactivated VEE virus combined with adjuvant 65^a

<table>
<thead>
<tr>
<th>Inoculum</th>
<th>One vaccine injection</th>
<th>Two vaccine injections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alive/total</td>
<td>Survival (%)</td>
</tr>
<tr>
<td>IIAH vaccine</td>
<td>15/15</td>
<td>100</td>
</tr>
<tr>
<td>Adjuvant 65 only</td>
<td>0/2</td>
<td>0</td>
</tr>
<tr>
<td>None</td>
<td>0/15</td>
<td>0</td>
</tr>
</tbody>
</table>

^a Adult guinea pigs, 250 to 300 g. Intraperitoneal challenge with 1,000,000 GPIPLD₅₀ of Trinidad strain VEE virus.
antigen concentration and minimal nonimmuno
genic constituents is a common aim of those
studying new approaches to viral immunization.
Earlier reports from this laboratory indicated that
VEE virus preparations of high purity and concen-
tration were obtained by DEAE cellulose
chromatography and that ionizing radiation
destroyed the infectivity of such preparations
without significant damage to their in vitro (HA,
CF) antigenic activity. This present report indi-
cates that these purified and inactivated prepara-
tions are capable of stimulating a marked re-
sponse in host animals, resulting in vivo pro-
tection against lethal challenge, and that they
are thereby of high immunogenic potency.

Inactivated vaccines of high potency prepared
from viruses with unusual stability and resistance
to inactivation require exacting safety tests to
exclude the potential presence of residual live
virus. In this study, three different criteria were
routinely used to measure virus inactivation:
lack of plaque formation in CETC, lack of lethality
for weanling mice, and lack of lethality for
very susceptible newborn mice. Additional
evidence of inactivation is available from the
vaccine studies themselves. The failure of
immunized weanling mice to die during the holding
period after an initial immunizing injection,
where a substantial volume of undiluted and
diluted vaccine was employed, provides an even
more sensitive indication of the absence of
residual live virus in the irradiated preparations.

Further evidence of virus inactivation and an
additional indication that immunogenic stimula-
tion by the vaccines is not due to subclinical
infection by trace amounts of residual live virus
are apparent in the results of the fluid vaccine
studies in mice. Excellent protection of im-
munized weanling animals was obtained with vaccines
diluted as much as 1:100 after inactivation and
safety testing of the preparations. To attribute
the protection observed to potential residual
live virus would require an assumption that the
assay systems are not capable of detecting live
virus in excess of 2 log10. This is obviously not
the case, and the immunogenicity observed is
evidently a property of the inactivated virus.

The immunogenic potency of the nonviable
vaccines described in this report is similar to that
of other recently described VEE vaccines that
were also inactivated by ionizing radiation (13).
Those vaccines were evaluated by determination
of the 50% effective dose (ED50), the quantity of
undiluted vaccine protecting 50% of tested ani-
mals from a lethal challenge. The most potent
tissue culture vaccine of several described for mice
(ED50 of 0.0036) apparently required two immu-
nizing inoculations of a 1:70 dilution of vac-
cine to protect half of the mice. Two vaccines that
were partially purified by ultracentrifugation ap-
parently required two (ED50 of 0.01) and three
(ED50 of 0.017) immunizations of 1:25 dilution
of virus for best effect. Our studies of diluted fluid
vaccines in mice furnish similar data from which
valid comparisons can be made. Mice inoculated
twice with purified VEE vaccines (IIFS, IIFH)
and subjected to an equivalent lethal challenge
(Table 4) were completely protected with 1:10
diluted vaccine and exhibited more than 50%
survival with vaccines diluted 1:100 (this repre-
sents an ED50 of <0.0030). Additionally, these
purified vaccines provided 50% protection to mice
at 1:10 dilution with only one inoculation and
100% protection to all mice when three immuni-
izations of 1:100 diluted vaccines were used. With
guinea pigs, direct comparisons are not possible
since we used an adjuvant-combined vaccine
administered via the subcutaneous route, but it
should be noted that the purified and adjuvant-
combined vaccine protected 100% of guinea pigs
receiving only a single immunization.

The susceptibility of mice to peripheral inocu-
lation with most arboviruses, in contrast to
intracerebral inoculation, usually diminishes
markedly with increasing age. This decreasing
susceptibility presents problems in vaccine studies
where mice are held to maturity before being
challenged. However, intraperitoneal neutraliza-
tion tests with VEE virus were shown to give
uniform results in mice of any age up to at least
200 days, and the quantity of virus neutralized
was 1,200 to 20,000 times that neutralized by the
intracerebral route (6). Thus, survival of adult
mice after lethal intraperitoneal challenge is a
valid test for evaluating immunity to VEE virus.

Adjuvant 65 is a nontoxic and metabolizable
oil vehicle for aqueous vaccines. It has been most
thoroughly tested in its application to influenza
virus vaccines and has proved highly effective in
potentiating the level and duration of antibody
both in animals and in man (5). It seemed de-
sirable to determine the applicability of this
adjuvant to the VEE virus vaccines under investiga-
tion. The VEE virus-adjuvant-combined vac-
cines in mice proved to be at least as effective as
similar fluid vaccines. Weanling mice inoculated
intraperitoneally and adult mice inoculated sub-
cutaneously were both afforded essentially com-
plete protection with one inoculation of combined
vaccine. Guinea pigs inoculated once and sub-
jected to an extremely high challenge dose were
similarly protected. No incompatibility with VEE
virus immunogens was noted, and no macro-
scopic lesions or other pathology was observed
at the inoculation sites. Further studies of the
immunological protection conferred by adjuvant
65 combined VEE virus vaccines and comparisons with other types of vaccines appear warranted.

ACKNOWLEDGMENT

I thank Duane Birrell for excellent technical assistance throughout this investigation.

LITERATURE CITED

