Effect of Splenectomy on the Size of Amoebic Liver Abscesses and Metastatic Foci in Hamsters

E. GHADIRIAN and E. MEEROVITCH*
Institute of Parasitology, McGill University, Macdonald College, St. Anne de Bellevue, Quebec H9X 1C0, Canada

The role of the spleen in hepatic amoebiasis in hamsters was studied. In hamsters receiving an intrahepatic inoculation of 10^6 trophozoites of axenic Entamoeba histolytica at 7 or 14 days postsplenectomy, the mean weight of metastatic foci increased significantly when compared with sham-splenectomized or intact controls. In contrast, when both splenectomy and intrahepatic inoculation with amoebae were carried out at the same time, there was not only a significant increase in the mean weight of metastatic foci but also in the liver abscesses. It is suggested that the spleen is important for host defense against E. histolytica infection, especially in the reduction in the degree of metastatic spread from the primary site.

The role of the spleen in protozoan infections has been studied by a number of workers. Taliaferro (13) in a comprehensive review on the function of the spleen in relation to blood protozoan infections indicated that this organ is essential in their control. The function of the spleen is generally ascribed to the phagocytic activity of spleen cells and to the development of humor (13) or cellular immunity (10, 12). Haleem and Minton (7) reported that parasitemia due to Trypanosoma lewisi increased significantly in splenectomized rats as compared with the control groups (14), and Hof et al. (8) demonstrated that splenectomy significantly affected the course of Plasmodium berghei and Toxoplasma gondii infections in rats and mice, respectively, and produced very high mortality. Hussein (9) reported that splenectomy increased parasitemia and mortality in mice infected with Babesia microti and B. hylomsci. Wyler et al. (15) indicated that the spleen exerted a protective role during the acute stage and a suppressive function in the chronic phase of quartan malaria due to Plasmodium inui.

Although it has been shown that splenomegaly results from hepatic amoebiasis in hamsters (6a), the effect of splenectomy on the course of experimental amoebiasis has not been investigated.

The present study examines the effect of splenectomy on the establishment of amoebic liver abscesses and on their metastatic dissemination to other organs in hamsters.

MATERIALS AND METHODS
The IP-106-L2 substrain of Entamoeba histolytica used in these experiments was obtained by passaging the IP-106 strain (5) twice through hamster liver, followed by reisolation in axenic culture in the TPS-1 medium (1).

Six-week-old female inbred Syrian hamsters, strain LHC/LAK, weighing 60 to 65 g, were used in this study.

Hamsters were anesthetized by intraperitoneal injection of Nembutal (Abbott Laboratories). An incision was made below the last rib in the flank. The spleen was exposed on a gauze pad, its major blood vessels were tied with 5-0 surgical silk (Ethicon Sutures Ltd.), and the spleen was removed. The skin was closed with stainless steel autoclips (Clay Adams). The operated animals remained under observation in the operating room for 1 h before they were transferred to individual plastic cages and given mouse chow and water ad libitum. In sham splenectomy, the spleen was exposed and then replaced to the peritoneal cavity. The skin was closed as already described. Amoebae, in a dose of 10^9 axenic trophozoites in 0.1 ml of medium, were injected directly into the edge of the liver with a tuberculin syringe and a gauge 26, 3/8-in (ca. 9.45-mm) needle.

All of the hamsters were killed 10 days after amoebic inoculation. A macroscopic examination was made of the liver and other organs which could have been affected by amoebae. Direct smears were made from the infected tissues to demonstrate microscopically the presence of amoebae. The presence of amoebic abscesses in the liver and of metastatic foci in other sites was noted. The organs affected were the diaphragm, peritoneum, kidneys, and spleen.

The abscesses in the primary and secondary sites were carefully dissected out of the surrounding healthy tissue and weighed on a Mettler PL1300 read-out top-loading balance. The weights were used to quantify the degree of the infection.

The differences in the mean weights of liver abscesses and metastatic foci in the experimental and control groups were analyzed by Student's t test and were considered significant for probability (P) values of <0.05.
RESULTS

In a preliminary experiment, three groups of eight hamsters each were used. Animals in group 1 were splenectomized, those in group 2 were sham splenectomized, and those in group 3 were intact controls. All of the animals were inoculated intrahepatically with amoebae and killed 10 days later. The data shown in Table 1 demonstrate that amoebic liver abscesses and metastases in hamsters of group 1 (inoculated with amoebae immediately after splenectomy) were significantly larger than those in the two control groups. Sham operation did not have any effect on the size of the abscesses or metastases as compared with intact controls.

To confirm these preliminary results and to determine whether the length of the time interval between splenectomy and inoculation with amoebae had any effect on the severity of the infection, the following three experiments, each using 24 hamsters, were performed. In each experiment there were three groups of eight hamsters each. Group 1 in each case consisted of splenectomized animals, group 2 consisted of sham-splenectomized animals, and group 3 consisted of intact controls. In experiment 1, splenectomy and sham splenectomy were performed 14 days before amoebic inoculation; in experiment 2, the surgery was performed 7 days before amoebic inoculation; and in experiment 3, the surgery and inoculation were done at the same time.

Table 2 shows the results of experiment 2. Splenectomy performed 14 days before inoculation caused only slightly bigger liver abscesses than those in the two control groups, but significantly larger metastatic foci. The results of experiments 3 (Table 3) shows that splenectomy performed 7 days before amoebic inoculation had an effect similar to that of splenectomy performed 14 days before inoculation, whereas splenectomy performed on the same day as inoculation (experiment 4, Table 4) resulted in significantly bigger liver abscesses and metastatic foci, thus confirming the results of the preliminary experiment.

<table>
<thead>
<tr>
<th>Table 1. Preliminary data on the effect of splenectomy on liver abscess weight and metastasis of E. histolytica in hamsters inoculated on day of surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Splenectomized</td>
</tr>
<tr>
<td>Sham operated</td>
</tr>
<tr>
<td>Control</td>
</tr>
</tbody>
</table>

* Eight hamsters per group.
* Mean ± standard deviation; P < 0.001.

<table>
<thead>
<tr>
<th>Table 2. Effect of splenectomy on liver abscess weight and metastasis of E. histolytica in hamsters inoculated 14 days after surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Splenectomized</td>
</tr>
<tr>
<td>Sham operated</td>
</tr>
<tr>
<td>Control</td>
</tr>
</tbody>
</table>

* Eight hamsters per group.
* Mean ± standard deviation; not significant.
* Mean ± standard deviation; P < 0.01.

<table>
<thead>
<tr>
<th>Table 3. Effect of splenectomy on liver abscess weight and metastasis of E. histolytica in hamsters inoculated 7 days after surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Splenectomized</td>
</tr>
<tr>
<td>Sham operated</td>
</tr>
<tr>
<td>Control</td>
</tr>
</tbody>
</table>

* Eight hamsters per group.
* Mean ± standard deviation; not significant.
* Mean ± standard deviation; P < 0.001.

<table>
<thead>
<tr>
<th>Table 4. Effect of splenectomy on liver abscess weight and metastasis of E. histolytica in hamsters inoculated on day of surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Splenectomized</td>
</tr>
<tr>
<td>Sham operated</td>
</tr>
<tr>
<td>Control</td>
</tr>
</tbody>
</table>

* Eight hamsters per group.
* Mean ± standard deviation; P < 0.001.

DISCUSSION

It is generally known that the spleen plays an important role in elaborating cellular or humoral immunity against various infections. Pitney (11), in a review of the literature on the role of the spleen in malaria, suggested that its removal may interfere with both the cellular and humoral defense mechanisms which the host requires for protection against this infection.

The results of the present experiments (Tables 2 and 3) indicate that in hamsters inoculated with amoebae 14 or 7 days after splenectomy, there was a significant increase in the size of metastatic foci as compared with control animals, but not in the size of the liver abscesses. In contrast, when splenectomy and intrahepatic inoculation with amoebae were done at the same time, not only was there a significant increase in the dissemination of amoebae from the initial site of injection, but also a great increase in the size of the liver abscess (Tables 1 and 4). Although no specific explanation can be offered for
the enhancement of liver abscesses in these
groups, it is evident that splenectomy and
inoculation of amoebae at the same time made
the animals much more susceptible to the infection.
If this interpretation is correct, it is likely that
the splenectomized animals of the other groups
required 7 to 14 days after the operation to
become immunologically compensated for the
loss of spleen.

In previous reports (5, 6) it was shown that
intrahepatic inoculation of hamsters with amoebae
not only produced abscesses but also meta-
static foci in other sites, such as the spleen,
kidneys, diaphragm, lungs, and mesentry. It
appears that this parasite, under certain condi-
tions, may undergo tumor cell-like metastatic
dissemination. The results of the present ex-
periments indicate that in hepatic amoebiasis the
spleen may specifically control metastatic dis-
semination of the amoebae from the primary
focus to other sites. Faraci et al. (2), in their
study on the effect of splenectomy on metastatic
spread of murine reticulum cell sarcoma, have
shown that splenectomized animals had the
highest number of visceral metastases. Gershon
and Carter (3) and Gershon and Kondo (4) dem-
onstrated that splenectomy induced decreased
immunity to transplantable lymphoma and in-
creased the number of metastatic deposits in
hamsters.

The present results show that splenectomy
increases both the size of amoebic abscesses
in the liver and dissemination of amoebae to other
sites. Thus, the intact spleen appears to be
important in the control of the E. histolytica
infection, but the exact nature of the mechanism and
of the effector cells involved is not clear at
present.

ACKNOWLEDGMENTS

A Natural Sciences and Engineering Research Council of
Canada operating grant (A 4943) to E.M. is gratefully acknowl-
edged. Research at the Institute of Parasitology is supported
by the Natural Sciences and Engineering Research Council of
Canada and the Formation des Chercheurs et d’Action Con-
certée du Ministère de l’Education du Québec.

LITERATURE CITED

1. Diamond, L. S. 1968. Techniques of axenic cultivation of
Entamoeba histolytica Schaudin, 1903, and E. histolytica
like amoebae. J. Parasitol. 54:1047–1058.
2. Faraci, R. P., J. C. Marrone, G. R. Lesser, and A. S.
Ketcham. 1975. The effect of splenectomy on tumor
immunity and metastatic spread of a murine reticulum
trolling concomitant immunity in tumor-bearing ham-
sters: effects of prior splenectomy and tumor removal.
which the spleen may act in regulation of tumor immu-
ity after tumor resection. J. Natl. Cancer Inst. 43:
545–561.
5. Ghadirian, E., and E. Meurovitch. 1978. Behavior of
axenic IP-106 strain of Entamoeba histolytica in the
of axenically cultivated Entamoeba histolytica, strain
1980. Protection against amebic liver abscess in ham-
sters by means of immunization with amebic antigen
and some of its fractions. Am. J. Trop. Med. Hyg. 29:
779–784.
adrenalectomy and splenectomy on Trypanosoma lew-
8. Hof, H., K. Hohne, and P. R. Seelig. 1976. Macro-
phage function and host resistance against infection
1457.
9. Hussein, H. S. 1979. Babesia microti and Babesia hyro-
mysci: spleen and phagocytosis in infected mice. Exp.
Parasitol. 47:1–12
fer of immunity by antisera and cells. Exp. Parasitol.
27:479–495.
transfer of immunity to Plasmodium berghei. J. Proto-
zool. 16:728–730.
13. Taliaferro, W. H. 1966. Function of the spleen in immu-
14. Todorovic, R., D. Ferris, and M. Ristic. 1967. Roles of
the spleen in acute Plasmodial and Babesial infections
Spleen function in Quatrain malaria (due to Plasmo-
dium inui): evidence for both protective and suppres-