Temperature-Modulated Immunogenicity to *Yersinia pestis* from *Yersinia enterocolitica* O3

JEAN MICHEL ALONSO,1* BRUNO HURTREL,2 DANIEL MAZIGH,1 MARIE ANTOINETTE CHALVIGNAC,1 AND HENRI H. MOLLARET1

Unité d'Ecologie Bactérienne, Centre National des Yersinia,1 and Unité d'Immunophysiologie Cellulaire,2 Institut Pasteur, 75724 Paris Cedex 15, France

Received 1 July 1981/Accepted 28 November 1981

The ability of *Yersinia enterocolitica* O3, grown at 25°C, to promote cross-immunity to *Y. pestis* was lost after repeated subcultures at 37°C, which selected for bacterial populations having lower in vivo survival. Subculturing *Y. enterocolitica* O3 from 37 to 25°C restored the cross-immunogenicity although the in vivo survival remained low.

Mice convalescing from *Yersinia enterocolitica* O3 are resistant to *Y. pestis* (1, 3). It has been reported that incubation of *Y. enterocolitica* O3 grown at 37°C rather than 25°C decreases its in vivo survival in mice (12) and could inhibit the elaboration of common protein antigens to *Y. pestis* (4). With respect to these temperature-dependent parameters, we tested, in this study, whether the ability of *Y. enterocolitica* O3 to promote immunity to *Y. pestis* was influenced by the temperature of culture of the *Y. enterocolitica* O3 inoculum or not.

Groups of Swiss female mice, (Institut Pasteur, Ferme Expérimentale de Rennemoulin, Villepreux, France), 5 to 6 weeks old, were injected intravenously with *Y. enterocolitica* 4052 (YE) as described in previous studies (1, 2) (mean 50% lethal dose, 7 × 10⁷ colony-forming units [CFU]); YE was grown for 24 h at 25 or 37°C on Trypto-casein-soy agar (Institut Pasteur Production). Mice that were convalescing from YE infection were challenged with *Y. pestis* 6/69M (YP) as described previously (1, 3) (mean 50% lethal dose, <10 CFU); YP grown on Trypto-casein-soy agar at 25°C was injected subcutaneously.

In this first experiment in this study, mice injected with YE grown at 25 or 37°C (six repeated subcultures at 37°C) were checked for their immunity to YP by testing their acquired resistance and by measuring their delayed-type hypersensitivity to 5 × 10⁶ heat-killed YP injected subcutaneously in a hind footpad, as previously described (9). Mice convalescing from YE infection, induced with the inoculum grown at 25°C, exhibited acquired resistance and delayed-type hypersensitivity to YP, whereas mice convalescing from YE infection, induced with a threefold-higher inoculum grown at 37°C, were susceptible and did not express delayed-type hypersensitivity to YP (Table 1).

It may be argued that the inability of YE subcultured at 37°C to induce cross-immunity to YP might be because of a lower and short-time in vivo survival of the inoculum (12). In the next experiment, mice were injected intravenously with decreasing doses of YE grown at 25°C or with approximately the same dose of YE subcultured four or six times at 37°C; the in vivo survival of each inoculum was measured by counting the number of CFU recovered per spleen, homogenized, sampled on Trypto-casein-soy agar, and incubated at 28°C for 48 h, as previously described (2). By decreasing doses of YE grown at 25°C, we induced splenic infection, the intensity of which was in correlation with the size of each inoculum (Fig. 1). The injection of YE repeatedly subcultured at 37°C induced splenic infection, the intensity of which decreased depending on the number of subcultures at 37°C (Fig. 1). A low dose of YE grown at 25°C (3 × 10⁶ CFU) or a heavy dose of YE subcultured six times at 37°C (1.6 × 10⁹ CFU) induced quantitatively equivalent splenic infection; however, after mice convalescing from either the low or heavy dose of YE were challenged with YE (30 times the 50% lethal dose, at day 30 after the YE injection), survivors were observed only in the group of 10 mice that were first infected with 3 × 10⁹ CFU of YE grown at 25°C (four survivors at day 20 after YP challenge), whereas the 10 mice that were first infected with 1.6 × 10⁹ CFU of YE subcultured six times at 37°C and the 10 uninfected control mice died within 10 days.

Thus, it seemed that repeated subcultures at 37°C not only decreased the in vivo survival rate of YE, but moreover might have removed cross-protection to YP.

Among the *Y. pestis* virulence determinants (5), VW antigens have been identified in some virulent *Y. enterocolitica* (6, 7). Since the pres-
TABLE 1. Effect of culture temperature on acquired resistance and delayed-type hypersensitivity to YE of mice convalescing from YE

<table>
<thead>
<tr>
<th>YE inoculum</th>
<th>Acquired resistance to YE lethal challengea</th>
<th>Delayed-type hypersensitivity to YE footpad swelling (mm)b at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Survivors/totalc</td>
<td>Mean survivald</td>
</tr>
<tr>
<td>5 × 10⁵ CFU of YE grown at 25°C</td>
<td>8/10</td>
<td>0.74 ± 0.09f</td>
</tr>
<tr>
<td>1.7 × 10⁶ CFU of YE subcultured</td>
<td>0/10</td>
<td>0.51 ± 0.03f</td>
</tr>
<tr>
<td>6 times at 37°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uninfected control mice</td>
<td>0/10</td>
<td>0.47 ± 0.08f</td>
</tr>
</tbody>
</table>

a 30 times the 50% lethal dose injected subcutaneously at day 30 after YE injection.
b Mean value ± standard error of the footpad swelling measured at 24 h after the injection of 5 × 10⁶ CFU of heat-killed YE in groups of 5 mice.
c Number of surviving mice at day 20 after YE challenge per total number of mice tested.
d Mean for 10 mice ± standard error of the mean, calculated after negative-exponential transformation of Liddel (11), using the constant θ = 0.1 and the full period of observation at 20 days (T = 20).
e Significantly higher than controls at P < 10⁻⁴, determined by Student’s t test.

ence of VW antigens is correlated with the inability of *Yersinia* spp. to grow on magnesium oxalate agar at 37°C, we tested the growth of various YE cultures by the method of Higuchi and Smith (8) compared with that of the *Y. enterocolitica* WA strain, kindly provided by P. B. Carter (The Trudeau Institute, Saranac Lake, NY); the *Y. enterocolitica* WA strain was stored at 25°C and used as a reference VW positive strain (6). YE colonies were counted at equivalent frequencies on both magnesium oxalate and Trypto-casein-soy agar plates incubated at 25 or 37°C, after 1.5 × 10⁵ to 2.5 × 10⁶ CFU of YE grown at 25°C or subcultured at 37°C had been sampled.

Laird and Cavanaugh reported that virulent *Yersinia* spp. autoagglutinated in tissue culture media incubated at 36°C (10); they studied *Y. enterocolitica* 4052, the same strain we used in the present experiments, and found positive virulent and negative avirulent colonies. Accordingly, isogenic pairs from 10 randomly selected colonies of YE grown at 25°C or subcultured from 25 to 37°C, then from each repeated subculture at 37°C until the 20th subculture, and finally from YE subcultured 20 times at 37°C then once at 25°C were tested for their ability to autoagglutinate when grown in RPMI-1640 medium containing 25 mM HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer (Flow Laboratories, 92600 Assinières). No positive virulent colonies were identified after the fourth subculture at 37°C or after the subcultures from 37 to 25°C.

Thus, it seemed that subcultures at 37°C selected for non-autoagglutinating avirulent YE (Fig. 1) were unable to promote cross-protection or delayed-type hypersensitivity to YE (Table 1). We tested whether these temperature dependence-associated properties were stable by comparing the in vivo survival rate and the ability to induce resistance to YE of YE grown at 25°C, YE subcultured 20 times at 37°C, and YE subcultured 20 times at 37°C then once at 25°C. When YE was subcultured from 37 to 25°C, the in vivo survival rate remained as low as that for YE subcultured 20 times at 37°C, but a significant, although partial, cross-protection to YE was restored (Table 2).

Culture of *Y. enterocolitica*, including O3 strains, at 37°C in artificial media without the addition of calcium may lead to the lack of plasmid-associated virulence correlated with autoagglutination (13, 14). From our results, it appeared that such a phenomenon may have occurred and could explain the lower in vivo survival of YE inocula subcultured at 37°C. The

![Graph showing kinetics of Y. enterocolitica per spleen](http://iai.asm.org/)

FIG. 1. Kinetics of the in vivo survival in mice injected intravenously with cultures derived from YE grown at 25°C: 1.8 × 10⁶ (●), 5 × 10⁶ (■), 3 × 10⁶ (□), or 1.4 × 10⁸ CFU of YE subcultured four times at 37°C (●) or six times at 37°C (□). Values are expressed as the means ± standard errors for five mice.
TABLE 2. Comparison between the autoagglutination property, the in vivo survival, and the ability to promote acquired resistance to YP of various cultures derived from YE

<table>
<thead>
<tr>
<th>YE culture</th>
<th>Autoagglutination</th>
<th>Intravenous inoculum (log₁₀ CFU)</th>
<th>Log₁₀ CFU recovered per spleen at:</th>
<th>Acquired resistance to YP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Day 1</td>
<td>Day 2</td>
<td>Day 3</td>
</tr>
<tr>
<td>YE25</td>
<td>9/20</td>
<td>5.78</td>
<td>4.80 ± 0.08</td>
<td>4.83 ± 0.06</td>
</tr>
<tr>
<td>YE37</td>
<td>0/20</td>
<td>5.80</td>
<td>3.11 ± 0.10</td>
<td>2.93 ± 0.14</td>
</tr>
<tr>
<td>YE37–25</td>
<td>0/20</td>
<td>5.60</td>
<td>3.01 ± 0.09</td>
<td>2.86 ± 0.08</td>
</tr>
<tr>
<td>Uninfected control mice</td>
<td>0/20</td>
<td>3.11 ± 0.09</td>
<td>2.86 ± 0.08</td>
<td>2.33 ± 0.17</td>
</tr>
</tbody>
</table>

- YE25, YE grown at 25°C; YE37, YE subcultured 20 times at 37°C; and YE37–25, YE subcultured 20 times at 37°C then once at 25°C.
- Number of positive colonies per total number of colonies.
- Mean ± standard error of five mice.
- Number of surviving mice at day 20 after YE injection.
- Mean ± standard error for 19 mice, calculated after negative-exponential transformation of Liddel (11), using $\theta = 0.1$ and $T = 20$.
- *Significantly higher than YE37 at $P < 10^{-4}$, determined by Student's t test.

ability to promote cross-immunity to YE, which was recovered after one subculture from YE subcultured from 37 to 25°C, might be due to a phenotypical property, perhaps an enhanced production by YE grown at a low temperature, of unidentified common antigen to YE.

This work was supported by the Institut National de la Santé et de la Recherche Médicale (A.T.P. INSERM 78/93).

LITERATURE CITED