Cloning of the Gene, speB, for Streptococcal Pyrogenic Exotoxin Type B in Escherichia coli

GREGORY A. BOHACH,* ALAN R. HAUSER, AND PATRICK M. SCHLIEVERT

Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455

Received 14 December 1987/Accepted 19 February 1988

The structural gene encoding streptococcal pyrogenic exotoxin type B, designated speB, was cloned in Escherichia coli and localized onto a 4.5-kilobase BamHI-BglII DNA fragment. Streptococcal pyrogenic exotoxin type B, partially purified from E. coli clones, was immunologically related to streptococcus-derived toxin. Also, toxin derived from either E. coli or Streptococcus pyogenes had similar lymphocyte mitogenic activity and molecular weight (29,300) and displayed comparable microheterogeneity when evaluated by isoelectric focusing.

Streptococcus pyogenes and Staphylococcus aureus produce a family of related pyrogenic toxins (PTs) with similar biological and biochemical properties. These include the streptococcal enterotoxins (ENTs) A through E (2), pyrogenic exotoxins A and B (20) toxic shock syndrome toxin-1 (TSST-1) (3), and the streptococcal pyrogenic exotoxins (SPEs) A through C (1). All of these toxins induce lymphocyte mitogenicity, immunosuppression, and fever and enhance lethal endotoxin shock (10, 13, 20, 25, 29). In addition to these shared biological properties, ENTs have the additional ability to induce emesis and diarrhea after oral administration (11). Likewise, SPEs are unique for their capacity to induce damage to heart tissue (24).

The study of streptococcal and streptococcal PTs has been facilitated by molecular cloning and sequencing of toxin genes. Thus far, genes for TSST-1 (15), ENT A (5), ENT B (22), ENT C1 (7), ENT D (K. W. Bayles and J. J. Iandolo, Abstr. Annu. Meet. Am. Soc. Microbiol. 1987, B-187, p. 56), SPE A (13), and SPE C (S. C. Goshorn, G. A. Bohach, and P. M. Schlievert, submitted for publication) have been cloned. We report in this paper the cloning of speB, the gene encoding SPE B.

DNA for construction of a genomic library was obtained from S. pyogenes 86-858 (M-type 12), a pharyngitis isolate that produces SPE B but not SPE A or C. The procedure used for obtaining the DNA involved cell lysis by treatment with mutanolysin (Sigma Chemical Co., St. Louis, Mo.) and sodium dodecyl sulfate (SDS) as described by Spanier and Cleary (28). For cloning, a partial digest of the genome was prepared by incubating the DNA (45 min) with Sau3A (0.1 U/μg of DNA). The resulting DNA fragments were separated by agarose gel electrophoresis (13), and those in the 4- to 10-kilobase (kb) size range were recovered by the rapid freezing method of Smith (26). T4 DNA ligase was used to ligate the DNA fragments to pBR328 (27) previously linearized with BamHI and dephosphorylated by using calf intestinal phosphatase (Boehringer Mannheim Biochemicals, Indianapolis, Ind.). Recombinant plasmids were transformed into Escherichia coli RR1 (9) by the method of Kushner (16), and transformants were selected on LB agar (4) containing ampicillin (40 μg/ml).

Approximately 2,000 transformants were screened for SPE B production with anti-SPE B hyperimmune rabbit antisera by using a colony immunoblot assay (7). Two reactive colonies were detected. To confirm that these colonies were producing SPE B, the two E. coli clones were grown in broth culture, lysed and precipitated with 4 volumes of ethanol (14), redissovled in water (50-fold concentration), and tested by Ouchterlony immunodiffusion (19) against SPE B rabbit antiserum. Lysates from the clones produced precipitin lines of identity with streptococcus-derived SPE B (Fig. 1). The antisera was specific for SPE B in that it did not react with purified streptococcus-derived SPE A or SPE C or with lystate from control cultures of E. coli RR1 (pBR328). The speB-containing recombinant plasmids carried by these clones were designated pUMN701 and pUMN702.

The 12.3-kb plasmid pUMN701, containing a 7.4-kb insert, was chosen for subcloning speB (Fig. 2). Digestion of pUMN701 with BglII yielded a 10.5-kb fragment containing pBR328 and a portion (5.6 kb) of streptococcal DNA. This 10.5-kb fragment, when ligated with pUC13 (30) and transformed into E. coli JM83 (18), resulted in transformants expressing SPE B [designated E. coli JM83(pUMN711)]. DNA flanking speB was removed from pUMN711 by digestion with EcoRI or BamHI. This yielded EcoRI-BglII and BamHI-BglII DNA fragments of 7.8 and 4.5 kb, respectively. Both fragments were ligated to pUC13 and transformed into E. coli JM83. Each transformant expressed SPE B. Although we identified and mapped numerous additional restriction sites on pUMN701 (Fig. 2), all attempts to localize speB onto fragments smaller than 4.5 kb were unsuccessful. Since approximately 1 kb of DNA should contain the entire structural gene for SPE B, we suspect that additional regulatory sequences contained within the 4.5-kb BamHI-BglII insert but not adjacent to the speB structural gene may be required for its expression.

A molecular weight comparison of streptococcus-derived and E. coli-derived SPE B was made by SDS-polyacrylamide gel electrophoresis. Toxin from both sources was first purified by thin-layer isoelectric focusing (23) in a pH gradient of 7.0 to 9.0. As observed previously (1), SPE B displayed microheterogeneity, and multiple charged forms (pI 8.0 to 9.0) were recovered in preparations from both sources. The biologically active pI-8.4 fractions (1) were recovered and analyzed by electrophoresis through 15% acrylamide vertical gel slabs by using the discontinuous system of Laemmli (17). Toxin preparations from S. pyogenes and E. coli RR1(pUMN701) contained a single protein (Mr, 29,300) (Fig. 3). Both proteins also reacted with SPE B
antiserum in a Western blot assay (6, 7). The molecular weight of SPE B was originally reported to be 17,500 (1), which is smaller than the value obtained in this study. This discrepancy is most likely explained by the extreme sensitivity of the protein to proteolysis (1).

To determine whether E. coli-derived SPE B (isoelectric focusing purified) was biologically active, its mitogenic ability as a representative property was compared to that of streptococcus-derived toxin, using rabbit (American Dutch belted) splenocytes as indicators of activity. Proliferation of the splenocyte cultures was evaluated by measuring the incorporation of 3H]thymidine (Amersham Corp., Arlington Heights, Ill.) into cellular DNA as described by Poindexter and Schlievert (21). Both toxin preparations stimulated similar lymphocyte proliferative responses. Mitogenic capacity was measured in SPE B-stimulated and unstimulated cultures (2×10^5 cells per culture) after 4 days. The streptococcus-derived toxin (1 μg) stimulated 3H]thymidine incorporation at the rate of 50,200 \pm 3,300 cpm, the E. coli-derived toxin (1 μg) stimulated incorporation at 46,500 \pm 2,500 cpm, and the unstimulated culture exhibited incorporation at 2,000 \pm 200 cpm. All of the incorporation rates are the means of four test cultures plus or minus the standard error of the mean.

The results of cloning the structural gene for SPE B presented in this paper are important for future studies of the structure-function relationship of the staphylococcal and streptococcal PTs. At least three other PTs (SPE A, ENT C1, and ENT B) have structural genes which share extensive sequence homology (8, 12, 31). Therefore, the shared biological and biochemical properties of some PTs may be the result of structural similarities. Whether or not SPE B is related to other PTs at the molecular level remains to be determined.

This work was supported by Public Health Service grant HL36611 from the National Heart Lung and Blood Institute. G.A.B. was

FIG. 2. Physical map of pUMN701 showing a 7.4-kb insert (solid line) from the partially digested genome of S. pyogenes 86-858 and pBR328 vector (broken line). Restriction fragments containing speB produced by digestion with BglII, EcoRI, and BamHI were subcloned into pUC13 to produce pUMN711-pUMN713.

FIG. 3. SDS-polyacrylamide gel electrophoresis and Western blot of SPE B from S. pyogenes 86-858 (lanes A and C) and E. coli JM83(pUMN713) (lanes B and D). Toxins (10 μg each) were analyzed by electrophoresis, followed by staining with Coomassie blue (lanes A and B). The molecular masses of protein standards are given in kilodaltons. An identical set of proteins was transferred to nitrocellulose and tested for reactivity with SPE B antiserum absorbed with E. coli RR1(pBR328) (lanes C and D).
supported by a postdoctoral fellowship from the American Heart Association, Minnesota Affiliate.

We thank Jeffrey Handler for technical assistance, Tim Leonard for art and photographic work, and Lisa Jensen for typing the manuscript.

LITERATURE CITED