Identification of an Immunodominant Antigenically Conserved 32-Kilodalton Protein from Cowdria ruminantium

FRANS JONGEJAN* and MARION J. C. THIELEMANS

Department of Tropical Veterinary Medicine and Protozoology, Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, P.O. Box 80.165, 3508 TD Utrecht, The Netherlands

Received 23 January 1989/Accepted 21 June 1989

Western blotting (immunoblotting) of Cowdria ruminantium antigens with goat or mouse antiserum identified a periodate-resistant, proteinase K-sensitive immunodominant antigen of 32,000 daltons. This protein, designated Cr32, could be demonstrated in goat choroid plexus infected with one of two different Cowdria stocks. Antisera against nine different Cowdria stocks from Africa and the Caribbean region recognized Cr32, which indicates that this protein contains conserved antigenic determinants.

Cowdriosis, or heartwater, caused by the tick-borne rickettsial pathogen Cowdria ruminantium, is an important infectious disease affecting domestic and wild ruminants (17, 19). The disease is endemic in sub-Saharan Africa and has recently been discovered in the Caribbean region (16), thus posing a threat for livestock on the American mainland (18). C. ruminantium stocks differ in antigenic composition, virulence, pathogenicity for mice, serotype, and rickettsial infection level within brain capillaries (4, 10, 19). For the development of improved methods of vaccination against cowdriosis, protective immunogens, which are conserved among the many different Cowdria stocks, need to be identified. We have studied C. ruminantium antigens by Western blot (immunoblot) analysis and found an antigenically cross-reactive 32,000-dalton Cowdria protein.

Nine stocks of C. ruminantium were used: one each from Senegal (10), Sudan (Uμ Banéni; 9), Kenya (Kiswani; 11), Nigeria (Ife), and Guadeloupe (Gardel; 20) and four stocks from South Africa (Ball 3 [8], Küm [6], Kwayanga [12], and Welgevonden [4]). All isolates were stored in liquid nitrogen as infected blood stablites as previously described (19). Polyvalent antisera were raised in goats and mice by intravenous inoculation of thawed blood stablites followed by antibiotic treatment to protect the animals against an otherwise lethal infection. All animals were challenged after 4 weeks, and sera were collected another 2 weeks later, unless reported otherwise.

Cowdria antigens were obtained from infected choroid plexus and larger brain blood vessels of goats. Blood vessels infected with Cowdria species (Senegal and Welgevonden stocks) were dissected from the brains of goats that had succumbed to cowdriosis. The vessels were stored in sucrose-phosphate-glutamate (SPG) buffer (2) at −20°C until used. Before the assay, the material was washed in SPG and ultrasonically disrupted in SPG on ice with a Branson Sonifier in four cycles of 30 s each with intervals of 1 min. The sonically treated material was centrifuged for 10 min at 1,000 × g, and the supernatant was centrifuged for 30 min at 20,000 × g. The pellet was resuspended in 1.0 ml of SPG and stored at −20°C. Choroid plexus and larger brain blood vessels were also obtained from noninfected control goats. The material was ultrasonically disrupted, and a pellet from the 20,000 × g centrifugation was prepared as described above.

Cowdria extracts were heated at 100°C for 5 min in sample buffer (0.6 M Tris hydrochloride buffer, pH 6.8, containing 2% sodium dodecyl sulfate, 10% glycerol, 5% 2-mercaptoethanol, and 0.01% bromophenol blue) and then applied onto 7.5 to 20% polyacrylamide gradient gels. Western blotting was performed by a modification of the method of Burnette (3). Electrophoretic transfer was accomplished at 20 V for 16 h followed by 1 h at 60 V. Thereafter, the blots were stained for 20 s in 0.2% Ponceau S in 3% trichloroacetic acid, cut into strips, and destained. Blots were incubated in quenching buffer (0.25% gelatin in phosphate-buffered saline) for 1 h, washed in phosphate-buffered saline-Tween 20, and incubated with goat or mouse antiserum diluted 1:100. Blots were again washed, and binding of the antibody was localized with rabbit anti-goat immunoglobulins conjugated with horseradish peroxidase or with horseradish peroxidase-conjugated rabbit anti-mouse immunoglobulins (Dakopatts, Glostrup, Denmark) diluted 1:750 for 80 min. Binding of the conjugate was visualized by immersing the blots for 30 to 60 s into 150 ml of H2O containing 300 μg of sodium nitroprusside (Sigma Chemical Co., St. Louis, Mo.), 120 mg of O-dianisidine (Sigma), and 100 μg of 30% hydrogen peroxide.

For protein digestion of the antigen (7), several blots were treated with proteinase K (10 mM Tris hydrochloride buffer, pH 7.5, containing 5 mM EDTA, 150 mM NaCl, 0.5% sodium dodecyl sulfate, and 200 μg of proteinase K per ml) for 4 h at 37°C before the blots were quenched in 0.25% gelatin-phosphate-buffered saline. For periodate oxidation (7), blots were incubated with 0.05 M NaIO4 in 0.01 M sodium acetate (pH 6.4) for 24 h at 4°C and then washed three times in 0.25% M sucrose—0.01 M Tris hydrochloride (pH 7.2). The blots were then treated with 0.25% gelatin-phosphate-buffered saline and processed as described above.

A predominant 32-kilodalton protein gave a strong signal in extracts that were infected with Cowdria (Senegal) stock probed with goat antisera raised against nine different Cowdria stocks (Fig. 1, lanes 4 to 12). This protein, designated Cr32 by abbreviations for genus, species, and molecular mass in kilodaltons, was not detected in noninfected extract probed with preimmune serum or Cowdria goat antiserum (Fig. 1, lanes 1 and 2) or in Cowdria species-infected extract probed with preimmune goat serum (Fig. 1, lane 3). Mouse antisera against two mouse-pathogenic Cowdria stocks (Küm and Kwayanga) also recognized Cr32 (Fig. 2, lanes 2 to 6), unlike preimmune mouse serum (Fig. 2, lane 1).
Antibodies were detected for at least 3 months after infection with the Kümm stock and for more than 5 months with the Kwanyanga stock (Fig. 2). Finally, Cr32 in plexus extract infected with Cowdria species of another origin (Welgevonden stock) was also detected by all nine goat antisera, of which only six are shown in Fig. 3.

Proteinase K digestion of nitrocellulose-bound Cr32 completely abolished antibody binding, unlike oxidation of Cr32 with periodate. This shows that Cr32 epitopes are proteins in nature rather than surface lipopolysaccharides.

The lack of sufficient amounts of Cowdria antigen has long been prohibitive for antigenic analysis using Western blotting. Also, in this study, only the Senegal and Welgevonden stocks, with exceptionally high numbers of brain capillaries containing rickettsial organisms (4, 10) (Fig. 4), yielded sufficient antigens. The breakthrough in cultivating Cowdria species in endothelial cells (1) will undoubtedly become an excellent alternative. Our preliminary results, with Cowdria species-infected bovine umbilical endothelial-cell cultures, show that Cr32 is also the dominant protein in rickettsiae cultivated in vitro.

Serodiagnosis of Cowdria infection based on the apparently highly conserved genus-specific Cr32 protein looks promising. Current serological tests for the diagnosis of Cowdria infections in ruminants are unsatisfactory because of cross-reactive antigenic determinants with Ehrlichia sp. (5) and the occurrence of serotype-specific antibodies (F. Jongejan, L. A. Wassink, M. J. C. Thielemans, N. M. Perie, G. Uilenberg, Vet. Microbiol., in press). It remains to be shown whether Cr32 is genus specific and will not cross-react with antibodies to, for instance, Ehrlichia sp. Our preliminary results, however, indicate that antibodies to Ehrlichia phagocytophila do not recognize any epitopes on the Cr32 protein.

Cr32 appears to bear antigenic determinants which are shared by all nine Cowdria isolates tested thus far, which were collected from geographically widely separated areas on the African continent and from the Caribbean region. Five of these nine stocks were antigenically distinct on the basis of protective cross-immunity trials in goats, whereas the remaining four were fully cross-protective with reference
FIG. 4. Brain squash smear made from the cerebral cortex of a goat that had died from cowdriosis. The number of rickettsial colonies within the capillary endothelial cells is exceptionally high, which is typical for this Senegalese Cowdria isolate. Twenty-five colonies are indicated (arrows). Giemsa stain. Magnification, ×960.

stock Ball 3 (10, 19, 20). For instance, goats immune to Cowdria (Senegal) infection were susceptible to challenge with Welgevonden (F. Jongejan and M. J. C. Thielemans, unpublished data). Cr32 seems less important as a protective immunogen, since both Senegal and Welgevonden stocks contain the Cr32 protein. However, in recent studies on another tick-borne rickettsial pathogen, Anaplasma marginale, two surface proteins of 36 kilodaltons (15) and 105 kilodaltons (13) which are highly conserved among antigenically distinct Anaplasma isolates from Israel, Kenya, and the United States (14) have been identified. Nevertheless, immunization with the 36-kilodalton surface protein induced protection against both homologous and heterologous Anaplasma marginale challenge in cattle (15). This indicates the potential cross-protective ability of conserved surface proteins, which are common to antigenically different isolates.

We are presently raising monoclonal antibodies against Cowdria species-specific antigenic determinants. Monoclonal immunoaffinity chromatography of Cr32 would enable us to examine the potential immunoprophylactic and diagnostic values of this dominant protein.

This work was supported by a grant from the European Community (Directorate General XII) under contract TSD-A-249.

We thank Ben van der Zeijst, Evert Hensen, and Gerrit Uilenberg for encouragement and critical comments on the manuscript and J. Nieuwenhuis for technical assistance.

LITERATURE CITED


