Genetic Linkage among Cloned Genes of *Streptococcus mutans*

Dennis Perry* and Howard K. Kuramitsu

Department of Microbiology-Immunology, Northwestern University Medical and Dental Schools, Chicago, Illinois 60611

Received 17 July 1988/Accepted 30 November 1988

Mapping vectors containing antibiotic resistance markers inserted adjacent to or within different cloned genes from *Streptococcus mutans* were used to determine the relative positions of these genes on the chromosome. The *gtfA*, *ftf*, and *scrB* genes were inserted into streptococcal mapping vector pVA891 adjacent to an Em' marker, whereas the Em' marker was inserted directly into the *gtfB* gene. These chimeric plasmids were transformed into *S. mutans* GS-5, selecting for Em' transformants. To determine the positions of the cloned genes relative to each other, it was necessary to construct plasmids labeled with a different antibiotic resistance marker. Thus, a Tet' gene was inserted adjacent to *gtfB* in the appropriate mapping vector and within the *ftf* and *scrB* genes with a mini-Mu transposon (Mu d'T). The chimeric plasmids were transformed into the appropriate Em' recipients, and the DNA from the resulting Em' Tet' transformants was used in linkage studies. Based on the cotransfer data, *gtfB* was not closely linked to *gtfA*, *ftf*, or *scrB*. However, *gtfA* cotransferred with *ftf* and *scrB* at frequencies of approximately 96 and 80%, respectively. The percent cotransfer of *ftf* and *scrB* was approximately 92. These data indicate that the three genes are clustered on the GS-5 chromosome, with *ftf* located between *gtfA* and *scrB*. Little, if any, linkage was observed between these genes and a variety of other random markers.

The production of glucosyltransferases by *Streptococcus mutans* enables these organisms to synthesize both soluble and insoluble glucans from sucrose (11). Although it is recognized that the synthesis of insoluble glucans enhances the colonization of tooth surfaces, the role of the soluble polymer and the number and specific role of each glucosyltransferase have not been clearly elucidated (4). At least two distinct glucosyltransferases appear to be involved in the synthesis of insoluble glucans (10, 14), one catalyzing the synthesis of primarily α-1,3-glucose linkages and the other catalyzing the synthesis of α-1,6-glucose linkages. It was suggested that soluble glucan acted as an autoprimor for the synthesis of insoluble glucan and that de novo synthesis of the former polymer was essential for the formation of the latter (7). Supporting this view was the finding that a dextran-like specific for α-(1,6) linkages (soluble glucans) inhibited sucrose-dependent colonization (23). A *gtfA* gene catalyzing the synthesis of a low-molecular-weight glucan has also been described (16, 17), but its role in adherence is uncertain. In addition to glucosyltransferases, *S. mutans* strains also produce fructosyltransferases (FTF), which synthesize both soluble and insoluble fructans from sucrose (4, 22), and sucrose-6-phosphate hydrolase, which is involved in the sucrose phosphotransferase system (3, 25).

The multitude of sucrose-metabolizing enzymes produced by most strains of *S. mutans* have added to the difficulty of isolating and characterizing those enzymes involved in the cariogenic process. One approach which should prove successful, however, has been the isolation of individual *S. mutans* genes by molecular cloning (9). In this regard, we recently initiated attempts to map cloned *S. mutans* genes by inserting antibiotic resistance markers adjacent to relevant genes on the chromosomes of these organisms. With this approach, the genetic location of *gtfA* (15) was indirectly determined by positive selection for an erythromycin resistance (Em') marker. The results showed that *gtfA* was cotransferable with a methionine marker but not with a number of other markers. The present investigation describes the linkage analysis of *gtfA* and the *S. mutans* genes *gtfB* (glucosyltransferase catalyzing the synthesis of primarily α-1,3-glucose linkages; 1), *ftf* (FTF; 21), and *scrB* (sucrose-6-phosphate hydrolase; 6), which recently have been cloned.

MATERIALS AND METHODS

Bacterial strains, DNA preparation, and transformation. The bacterial strains and plasmids used in this study are listed in Table 1. Isolation of mutants, maintenance, and growth of cultures were as previously described (15). Chromosomal and plasmid DNA preparations, transformation procedures, and media used to select for transformants were all recently described (15). Em' and tetracycline-resistant (Tet') transformants were scored on mitis salivarius agar or Trypticase soy agar (BBL Microbiology Systems, Cockeysville, Md.) containing 10 μg of erythromycin and/or 4 μg of tetracycline per ml.

Southern blot analysis. Restriction enzyme digestion, filling in with Klenow fragment of DNA polymerase I, and ligation were performed in accordance with the directions of the supplier (Bethesda Research Laboratories, Inc., Gaithersburg, Md.; International Biotechnologies, Inc., New Haven, Conn.). DNA fragments were separated by electrophoresis on 0.7% agarose gels, transferred to nitrocellulose paper (13), and hybridized with biotin-labeled probes under the conditions described by the supplier (Bethesda Research Laboratories).

Construction of hybrid plasmids. Details of the isolation of cloned *S. mutans* genes with the phage λ L47.1 vector system were described elsewhere (1). A portion of the *gtfB* gene was contained on a 1.6-kilobase (kb) BamHI fragment, with a 1.8-kb Em' gene replacing the 0.3-kb HindIII fragment (pT561; 1). The Em' gene was derived from streptococcal shuttle plasmid pVA891 (12). The FTF subclone, pSS7 (21), was digested with HindIII, and a 3.4-kb fragment containing the *ftf* gene was isolated by agarose gel electrophoresis and inserted into the HindIII site of plasmid pVA891 (pSS22e). The *scrB* gene was isolated on a 3.4-kb fragment from...
TABLE 1. Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Plasmid or strain</th>
<th>Description</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC8</td>
<td>Ap' E. coli</td>
<td>5</td>
</tr>
<tr>
<td>pBG8</td>
<td>Km' E. coli</td>
<td>24</td>
</tr>
<tr>
<td>pAM148</td>
<td>Tet' E. coli</td>
<td>D. B. Clewell</td>
</tr>
<tr>
<td>pVA981</td>
<td>Em'</td>
<td>12</td>
</tr>
<tr>
<td>pSS7</td>
<td>ftf (5.4 kb)</td>
<td>21</td>
</tr>
<tr>
<td>pMH163</td>
<td>scrB (6.4 kb)</td>
<td>6</td>
</tr>
<tr>
<td>plN1</td>
<td>pBG8-pAM148 ligate</td>
<td>This study</td>
</tr>
<tr>
<td>pLN2</td>
<td>Tet'</td>
<td>This study</td>
</tr>
<tr>
<td>pTS61</td>
<td>gftB Em'</td>
<td>1</td>
</tr>
<tr>
<td>pNP9</td>
<td>gftB Tet'</td>
<td>This study</td>
</tr>
<tr>
<td>pSS22e</td>
<td>ftf Em'</td>
<td>This study</td>
</tr>
<tr>
<td>pDP22t</td>
<td>ftf/Tet' (Mu dT)</td>
<td>This study</td>
</tr>
<tr>
<td>pMH146e</td>
<td>scrB Em'</td>
<td>This study</td>
</tr>
<tr>
<td>pDP146t</td>
<td>scrB Tet' (Mu dT)</td>
<td>This study</td>
</tr>
<tr>
<td>pHK601e</td>
<td>gftA Em'</td>
<td>15</td>
</tr>
</tbody>
</table>

S. mutans GS-5

serotype c strains

HK601e GS-5(pHK601e) This study
HK22e GS-5(pSS22e) This study
HK146e GS-5(pMH146e) This study
LN61e GS-5 containing 3.4-kb gftb This study
GtfA/GtfB HK601e(pNP9) This study
Ftf/GtfB HK22e(pNP9) This study
ScrB/GtfB HK146e(pNP9) This study
GtfA/Ftf HK601e(pDP22t) This study
GtfA/ScrB HK601e(pDP146t) This study
Ftf/ScrB HK22e(pDP146t) This study

pMH163 (6) after digestion with Sau3A1. This fragment was subsequently inserted into the BamHI site of pVA891 (pMH146e). Construction of pHK601e (gftA Em') was described previously (15).

Plasmid pNP9 (Fig. 1) containing the gftB fragment inserted adjacent to a Tet' gene was constructed by initially ligating SmaI-digested pBG8 (24) and HincII-digested pAM148 (Tet'; D. B. Clewell, personal communication). The Tet' gene in pAM148 is expressed in both gram-positive and gram-negative bacteria. The resulting hybrid plasmid (plN1) was digested with BamHI to remove the 5.4-kb fragment containing the Tet' gene; this fragment was inserted into the BamHI site of pUC8 to produce pLN2 (for convenient isolation of the Tet' gene with a variety of different restriction enzymes). Subsequently, the Tet' gene, isolated by agarose gel electrophoresis after BamHI digestion of pLN2, was inserted into the BamHI site of pBG8, which also contained the 1.6-kb BamHI gftB fragment (1; filled in with Klenow fragment and inserted into the Smal site of pBG8). The pAM148 Tet' gene was inserted into the ftf and scrB genes with the mini-Mu transposon Mu dT (H. K. Kuramitsu, unpublished data) as recently described (8). Plasmids pMH146e and pSS22e were the sources of the scrB and ftf genes, respectively. Mu dT contains the Tet' gene, and transposition of Mu dT within either the ftf or the scrB cloned gene resulted in the subsequent introduction of the Tet' marker into the GS-5 chromosomal genes following transformation. Plasmids pDP146t and pDP22t (Fig. 2) were linearized with EcoRI and ClaI, respectively, prior to transformation into S. mutans.

Each construct was confirmed by restriction enzyme analysis prior to and after transformation into S. mutans. The vectors used to construct hybrid plasmids replicate in Escherichia coli but not in streptococci. Thus, when these plasmids were transformed into strain GS-5, integration into the chromosome occurred by flanking homology (Fig. 1). Transformants were selected on media containing either erythromycin or tetracycline, and chromosomal DNA from these transformants was used to map the position of each GS-5 gene relative to each other and to a variety of auxo-
potrophic markers. The percent cotransfer was defined as the number of double transformants divided by the number of single transformants, multiplied by 100.

RESULTS

Cotransfer of selected markers with gtfB, ftf, and scrB. To map the relative locations of the *S. mutans* genes, we constructed hybrid plasmids which would insert an Em' gene within or adjacent to each homologous region (gtfB, ftf, scrB) of the GS-5 chromosome. Thus, any marker linked to the GS-5 genes would also be linked to Em'. The hybrid plasmids, pS22sc and pMH146c, and the 3.4-kb gtfB fragment containing the Em' gene were transformed into strain GS-5, and limiting concentrations of DNA from the resulting Em' transformants were used to determine linkage between the Em' gene and a variety of random markers (dextranase [Dex], bacteriocin production, auxotrophs, sugar nonutilization). Of 15 different markers examined, only Dex and isoleucine-valine (IIV) exhibited significant, although low, cotransfer with any of the inserted Em' genes (data not shown). These results showed that gtfB cotransferred with Dex at a frequency of approximately 6% and that ftf cotransferred with both Dex and IIV at frequencies of approximately 6%. Despite these relatively low frequencies, cotransfer of the markers was independent of DNA concentration. In contrast, other markers (unlinked) exhibited cotransfer frequencies of less than 1% at limiting DNA concentrations. The scrB gene did not cotransfer with any of the random markers tested.

Cotransfer of gtfB with gtfA, ftf, and scrB. *S. mutans* HK601e (gtfA Em'), HK22e (ftf Em'), and HK146c (scrB Em') were transformed with pNP9 (gtfB Em'), selecting for Em' Tet' transformants. DNA (0.5 μg/ml) from these transformants was used to transform wild-type GS-5. Transformants were selected on mitis salivarius agar containing either erythromycin or tetracycline and replica plated onto mitis salivarius agar containing both antibiotics to determine the number of Em' Tet' transformants. The cotransfer frequencies ranged from 0.17 to 0.30% (Table 2), indicating that gtfB was not linked to gtfA, ftf, or scrB.

Cotransfer of gtfA, ftf, and scrB. To determine the linkage between these three genes, GS-5 strains HK601e and HK22e were transformed with pDP146t (scrB Tet') DNA, and strain HK601e was also transformed with pDP22t (ftf Tet') DNA. The DNA from the resulting transformants (Em' Tet') was subjected to Southern blot analysis to verify the orientation and insertion of a single copy of each plasmid into the GS-5 chromosome (data not shown). Subsequently, this DNA was used to assay the frequency of cotransfer of Em' and Tet'

Table 2. Cotransfer of gtfB with gtfA, ftf, and scrB

<table>
<thead>
<tr>
<th>DNA donor</th>
<th>No. of the following transformants/0.1 ml</th>
<th>% Cotransfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>GtfA/GtfB</td>
<td>Em' 2,620; Tet' 4,840; Em' Tet' 22</td>
<td>0.30</td>
</tr>
<tr>
<td>Ftf/GtfB</td>
<td>Em' 4,220; Tet' 6,360; Em' Tet' 18</td>
<td>0.17</td>
</tr>
<tr>
<td>ScrB/GtfB</td>
<td>Em' 3,960; Tet' 6,040; Em' Tet' 22</td>
<td>0.22</td>
</tr>
</tbody>
</table>

a The strain designations indicate the GS-5 genes containing the adjacent Em' and Tet' genes (e.g., strain GtfA/GtfB represents gtfA and gtfB adjacent to Em' and Tet', respectively). Strain GS-5 was transformed with 0.5 μg of each DNA per ml.

b The Em' Tet' transformants were selected by direct plating on Trypticase soy agar containing both antibiotics.

c Percent cotransfer = (Em' Tet'/(Em' + Tet')) × 100.

Effect of DNA shearing on the cotransfer of GS-5 genes. The transfer of Em' and Tet' was moderately to highly sensitive to shearing (Table 4). Apparently, this sensitivity was independent of the association of each of these markers with a particular GS-5 gene. In addition, the sizes of the DNA fragments carrying the Em' (5.4 kb) and Tet' (13.2 kb) genes did not appear to be directly related to the sensitivity of these genes to shearing. As would be predicted from the linkage analysis, the GtfA/Ftf and Ftf/ScrB recombinants, which are closely linked, exhibited little loss of cotransfer activity after shearing. However, GtfA/ScrB, which cotransferred at a frequency of 72.8% with untreated DNA, lost almost half of this activity after shearing.

Effect of DNA concentration and phenotypic expression on the cotransfer of gtfA and ftf. The results obtained when the number of single and double transformants was determined as a function of GtfA/Ftf DNA concentration are shown in Fig. 3. The number of Em' and Tet' transformants were directly proportional to the limiting DNA concentrations. However, the percent cotransfer of these markers remained virtually the same irrespective of the concentration of the DNA. Both single and double markers appeared maximally after approximately 10 min of exposure of the cells to transforming DNA, although the Tet' marker did appear to be taken up by the cells at an approximately sevenfold faster rate (data not shown).

It was also of interest to examine the effect of time of phenotypic expression on the cotransfer of Em' and Tet' (Fig. 4). Tet' was fully expressed immediately after DNA uptake. In contrast, Em' was maximally expressed only after about 90 min of incubation. The number of Em' Tet' trans-

Table 3. Cotransfer of GS-5 Genes

<table>
<thead>
<tr>
<th>DNA donor</th>
<th>Em' Tet'/Em'r</th>
<th>Em' Tet'/Tet'r</th>
<th>% Cotransfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>GtfA/Ftf</td>
<td>117/121</td>
<td>132/139</td>
<td>95.8</td>
</tr>
<tr>
<td>GtfA/ScrB</td>
<td>99/127</td>
<td>127/155</td>
<td>80.1</td>
</tr>
<tr>
<td>Ftf/ScrB</td>
<td>66/69</td>
<td>80/89</td>
<td>92.4</td>
</tr>
<tr>
<td>Ftf/GtfB</td>
<td>1/100</td>
<td>0/100</td>
<td>0.5</td>
</tr>
</tbody>
</table>

a Strain GS-5 was transformed with 0.05 μg of each DNA. See Table 2, footnote a, for a description of the DNA donors.

b Transformants were selected on Trypticase soy agar containing the individual antibodies and then replica plated to Trypticase soy agar containing both antibiotics.

c Cotransfer was not observed for gtfB and ftf.

Effect of DNA concentration and phenotypic expression on the cotransfer of gtfA and ftf. The results obtained when the number of single and double transformants was determined as a function of GtfA/Ftf DNA concentration are shown in Fig. 3. The number of Em' and Tet' transformants were directly proportional to the limiting DNA concentrations. However, the percent cotransfer of these markers remained virtually the same irrespective of the concentration of the DNA. Both single and double markers appeared maximally after approximately 10 min of exposure of the cells to transforming DNA, although the Tet' marker did appear to be taken up by the cells at an approximately sevenfold faster rate (data not shown).

Table 4. Effect of shearing on the cotransfer of GS-5 genes

<table>
<thead>
<tr>
<th>DNA donor</th>
<th>% Residual transforming activity after shearing</th>
<th>% Cotransfer</th>
<th>% Loss of activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GtfA/Ftf</td>
<td>9.3 17.9</td>
<td>91.7</td>
<td>85.2 7.1</td>
</tr>
<tr>
<td>GtfA/ScrB</td>
<td>35.7 16.1</td>
<td>72.8</td>
<td>38.8 46.7</td>
</tr>
<tr>
<td>Ftf/ScrB</td>
<td>20.6 35.0</td>
<td>90.5</td>
<td>85.7 5.3</td>
</tr>
</tbody>
</table>

a Approximately 5 μg of each DNA in a volume of 0.1 ml was sheared by passage six times through a 0.5-in. (1.27-cm) 27.5-gauge needle equipped with a 1-ml syringe. Competent GS-5 cells were transformed with 0.05 μg of sheared or unsheared DNA per ml. See Table 2, footnote a, for a description of the DNA donors.

b Percent transformation with sheared DNA relative to unsheared DNA.
formants, when plated directly, more or less followed the appearance of Em\(^r\), also attaining maximum expression at 90 min. When the percent cotransfer of these markers was calculated and plotted against time of phenotypic expression, the ratio of double to single transformants only began to increase after 30 to 60 min. Again, maximum cotransfer was apparent after about 90 min. In this regard, it should be mentioned that the number of Em\(^r\) Tet\(^r\) transformants in this experiment was determined by direct plating on medium containing both antibiotics. For this reason, the cotransfer frequencies were lower than the values obtained by replica plating. Thus, the actual percent cotransfer of Em\(^r\) and Tet\(^r\), as determined by replica plating, was approximately 95% even at 30 to 60 min of expression.

DISCUSSION

The clustering of genes of similar activities to facilitate the coordinate regulation of their expression has been widely demonstrated. Thus, a major objective of this investigation was to determine whether the genes coding for sucrose-metabolizing enzymes are localized randomly or clustered on the *S. mutans* chromosome. In previous studies, attempts were made to map the location of *gtfA* by determining its cotransfer frequency with a variety of auxotrophic markers together with bacteriocin and Dex production (15). These results, however, only showed that *gtfA* was linked to a methionine marker. Similar studies with *gtfB*, *ftf*, and *scrB* revealed that these genes were not linked to methionine, suggesting that they also were not linked to *gtfA*. Although *gtfB* and *ftf* cotransferred at a frequency of 6% with *dex*, these genes are obviously loosely linked, if at all. Interestingly, Byrne et al. (2) found that *gtfA* was tightly linked to a Dex gene (*dexB*) on the GS-5 chromosome. However, it is not clear whether a single *dex* gene is present on the *S. mutans* chromosome.

The results of the present experiments showed that *gtfA*, *ftf*, and *scrB* are closely linked to each other but not to *gtfB*. The frequency of cotransfer data (Table 3) indicated that *ftf* lies between *gtfA* and *scrB* and is closer to *gtfA* than to *scrB* (Fig. 5). Chromosomal breakage during DNA isolation could account for the greater-than-expected map distance between *gtfA* and *scrB*. The relative sensitivity of the cotransfer of these genes to shearing supports this conclusion.

It would also be of interest to determine whether other *S. mutans* cariogenic genes are close to the *gtfA-ftf-scrB* gene cluster demonstrated in this study. In this regard, Russell et al. (18, 20) have isolated a glucan-binding protein that exhibits FTF activity. In contrast, the FTF derived from the pSS22e subclone in this study did not bind insoluble glucan (21). Since the *gbp* gene has been recently cloned (19), it should now be possible to determine the position of this gene relative to *ftf* and other related genes.I2:5q

ACKNOWLEDGMENTS

We thank Teruaki Shiroza for helpful advice and Lia Nilsen for excellent technical assistance.

This study was supported by Public Health Service grant DE-06082 from the National Institute of Dental Research.
LITERATURE CITED

