Differential Sensitivity of CD8\(^+\) Suppressor and Cytotoxic T Lymphocyte Activity to Bacterial Monophosphoryl Lipid A

FERNANDO ESQUIVEL, CHRISTOPHER E. TAYLOR, AND PHILLIP J. BAKER

Laboratory of Viral Diseases and Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook-II Research Facility, 12441 Parklawn Drive, Rockville, Maryland 20852

Received 15 April 1991/Accepted 2 July 1991

Treatment with a preparation of monophosphoryl lipid A, known to be capable of abolishing the expression of CD8\(^+\) suppressor T cell activity generated during the antibody response to type III pneumococcal polysaccharide (SSS-III), was found to have no adverse effect upon either induction or expression of CD8\(^+\) cytotoxic T lymphocyte activity specific for influenza A virus antigens. This suggests that suppressor T cells and cytotoxic T lymphocytes represent functionally distinct subsets of CD8\(^+\) T cells which can be differentiated on the basis of their sensitivities to inactivation by monophosphoryl lipid A.

Recent studies showed that treatment with bacterial monophosphoryl lipid A (MPL) abrogates the expression, but not the induction, of the activity of CD8\(^+\) suppressor T cells (Ts) elicited in response to type III pneumococcal polysaccharide (SSS-III) (8, 9). This occurs without adversely influencing functions mediated by CD4\(^+\) amplifier T cells (Ta) (8, 9) and helper T cells (Th) (8). It results in the reversal of low-dose immunological paralysis, a form of antigen-specific unresponsiveness mediated by CD8\(^+\) Ts (5, 6, 30), and enables Ta activity to be more fully expressed, as evidenced by an increased antibody response to SSS-III (8, 9). Prior in vitro treatment with MPL also abolishes the capacity of spleen cell suspensions containing Ts activity to transfer suppression to recipient mice immunized with SSS-III (15, 19). These observations imply that Ts, once activated, acquire a cell surface receptor for MPL and/or possess a biochemical pathway that is sensitive to being blocked or inactivated by MPL (5, 8, 19). MPL, therefore, can be considered to be a potent immunomodulator, since by eliminating the inhibitory effects of Ts it can greatly increase the expression of an immune response.

In the present work, the effect of in vitro and in vivo treatment with MPL on both the induction and expression of the activity of influenza virus-specific CD8\(^+\) cytotoxic T lymphocytes (Tc) was examined to determine whether the aforementioned effects of MPL are selective for Ts or whether they also apply to CD8\(^+\) Tc. The results obtained indicate that treatment with amounts of MPL known to abrogate the expression of Ts activity has no adverse effect either on induction or expression of Tc activity. Thus, Ts and Tc appear to represent functionally distinct subsets of CD8\(^+\) T cells that can be distinguished by means of their sensitivities to MPL.

MATERIALS AND METHODS

Mice. Female BALB/cByJ (H-2\(^b\)) and (C57BL/6 × SJL)F\(_1\) (H-2\(^b+d\)) mice, 6 to 8 weeks old, were obtained from the Jackson Laboratories, Bar Harbor, Maine. MPL. MPL isolated from Salmonella minnesota R595 [MPL(SM)] was purchased from Ribi ImmunoChem Research, Inc., Hamilton, Mont. The results of several preliminary experiments revealed that its immunomodulatory properties are the same as those described for MPL extracted from Salmonella typhimurium (8, 9). Lyophilized MPL(SM) was reconstituted to a concentration of 1 mg/ml in sterile distilled water containing 0.2% triethylamine. It was warmed to 45°C, mixed thoroughly, and then sonicated (15 s) to obtain a stock solution which was stored at 4°C until used. The stock solution was diluted to the desired concentration of MPL(SM) in either saline (for injection) or RPMI 1640 medium (for in vitro experiments) just before use. It should be noted that all of the experiments described in this report were conducted with the same lot of MPL (lot 039-17), known to be capable of eliminating Ts activity; similar results can be obtained with other lots of MPL(SM).

Antigen and the detection of antibody-producing cells. The immunological properties of the SSS-III used and the method by which it was prepared have been described previously (5, 10–13). For immunization, mice were given a single intraperitoneal (i.p.) injection of an optimally immunogenic dose (0.5 μg) of SSS-III in saline. Numbers of splenic antibody-producing plaque-forming cells (PFC) making antibody specific for SSS-III (SSS-III-specific PFC) provided a measure of the antibody response made at peak, i.e., 5 days after immunization. SSS-III-specific PFC making antibody of the immunoglobulin M class (>90% of all PFC found [11]) were detected by a slide version of the technique of localized hemolysis-in-gel by using indicator sheep erythrocytes coated with SSS-III by the CrCl\(_1\) method (14). Corrections were made for the small numbers of background sheep erythrocyte-specific PFC detected so that only values for SSS-III-specific PFC are considered. The values obtained (SSS-III-specific PFC per spleen), which are log normally distributed (22), are expressed as the geometric mean (antilog) of the mean log\(_10\) number of SSS-III-specific PFC per spleen for groups of similarly treated mice. This provides an accurate measure of the total antibody response elicited, since (i) SSS-III-specific PFC are detected only in the spleens of immunized mice (2), and (ii) the numbers of SSS-III-specific PFC per spleen are directly related to the magnitude of the serum antibody response (2, 23). Student’s \(t\) test was used to evaluate the significance of the differences found; differences were considered to be significant when probability (\(P\)) values <0.05 were obtained.
Differential Sensitivity to MPL

TABLE 1. Effect of treatment with MPL(SM) on the expression of low-dose immunological paralysis to SSS-III

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Priminga</th>
<th>Immunizationb</th>
<th>MPL(SMa)</th>
<th>SSS-III-specific PFC/spleenb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>4.101 ± 0.036 (12,630)</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>2.610 ± 0.300 (407)</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4.026 ± 0.042 (10,611)</td>
</tr>
</tbody>
</table>

a Mice were given 5 ng of SSS-III (i.p.) 3 days before i.p. immunization with 0.5 μg of MPL(SM).
b 25 μg of MPL(SM) was given (i.p.) on day 0 and on day +1 relative to immunization.

Effect of treatment with MPL(SM) on the expression of Tc activity in the antibody response. BALB/cByJ mice were pretreated (primed) with a single injection (i.p.) of a subimmunogenic dose (5 ng) of MPL(SM); 3 days later, they were immunized (i.p.) with an optimal dose (0.5 μg) of SSS-III and the magnitude of the antibody (SSS-III-specific PFC) response produced was determined 5 days after immunization. The results obtained were compared with those of unprimed immunized controls.

RESULTS

Effect of treatment with MPL(SM) on the expression of Tc activity involved in the antibody response. BALB/cByJ mice were pretreated (primed) with a single injection (i.p.) of a subimmunogenic dose (5 ng) of SSS-III. 3 days later, they were immunized (i.p.) with an optimal dose (0.5 μg) of SSS-III and the magnitude of the antibody (SSS-III-specific PFC) response produced was determined 5 days after immunization. The results obtained were compared with those of unprimed immunized controls.

Effect of in vitro treatment with MPL(SM) on the expression of Tc activity. (C57BL/6 × SJL)F1 mice were inoculated (i.p.) with 200 HAU of PR/8/34. Two weeks later, spleen cell release of 51Cr by target cells was less than 20% of the total release value. It has been established that CD8+ Tc, but not CD4+ Tc cells or B cells, generated after virus infection (29) recognize NP peptides 147-158 and 365-380; also, it has been established that the secondary cytotoxic response generated after exposure to these peptides is epitope specific as well as class I restricted (3, 32).

Preparation of target cells for use in cytotoxicity assays. Target cells were infected with PR/8/34 and labeled with 51Cr as described previously (32). Chromium-labeled target cells were sensitized with NP peptide for use in cytotoxicity assays by adding to the cultures 10 μl of tissue culture medium containing peptide, giving a final peptide concentration of 10^-6 M. Peptide was present in culture throughout the cytotoxicity assay to generate a secondary cytotoxic response directed against the epitope of that peptide.

Cytotoxicity assay. Tc generated after 7 days of culture were washed and then resuspended in Iscove's supplemented Eagle's medium supplemented with glutamine (100 mM), gentamicin (50 μg/ml), β-mercaptoethanol (5 × 10^-5 M), and 7.5% heat inactivated fetal bovine serum (HyClone, Logan, Utah). Iscove’s Dulbecco’s modified Eagle’s medium supplemented with glutamine (100 mM), gentamicin (50 μg/ml), β-mercaptoethanol (5 × 10^-5 M), and 7.5% heat inactivated fetal bovine serum (HyClone, Logan, Utah).
suspensions were prepared which were cultured in vitro for 7 days in the presence of 1 μg of NP peptide 365–380 per ml to elicit a secondary cytotoxic response directed against NP peptide 365–380. During this time, effector cells either were cultured in the continuous presence of different amounts (0.05 ng, 5 ng, 0.5 μg) of MPL(SM) or they were briefly treated with different amounts of MPL(SM) and then washed prior to culture [MPL(SM)-pulsed cells]. After 7 days in culture, the cells were assayed for cytotoxic activity at several E/T cell ratios by using 51Cr-labeled RMA target cells sensitized with NP peptide 365–380; controls consisted of 51Cr-labeled target cells not sensitized with NP peptide 365–380. The data of Fig. 1 show that in vitro treatment with different amounts of MPL(SM) had no effect on the expression of Tc activity. This was the case for effector cells either cultured in the presence of MPL(SM) or pulsed with MPL(SM) just prior to culture. No 51Cr release was detected when effector cells were added to target cells not sensitized with NP peptide 365–380 (data not shown); this indicates that the cytotoxic response detected is specific for NP peptide 365–380.

Effect of in vivo treatment with MPL(SM) on the induction of Tc activity. BALB/cByJ mice were inoculated (i.p.) with 200 HAU of PR/8/34 and were given either two or four i.p. injections of MPL(SM) at different times relative to infection. Here, MPL(SM) was given on days 1 and 2 after infection (two injections) or on days 1, 2, 6, and 7 after infection (four injections). Two weeks after infection, spleen cell suspensions were prepared which were then cultured in vitro for 7 days in the presence of stimulator cells infected with PR/8/34; the cultures were then assayed for cytotoxic activity at several E/T cell ratios, using 51Cr-labeled PB15 target cells sensitized with NP peptide 147–158 or infected with PR/8/34. The results obtained were compared with those for infected mice not treated with MPL(SM) to evaluate the effect of treatment with MPL(SM) on the induction or expression of Tc activity in vivo.

The data of Fig. 2 show that treatment with two injections of MPL(SM) during the first 7 days after inoculation with virus had no discernible effect on the induction of Tc activity; however, treatment with four injections of MPL(SM), two during the first week and two during the second week after inoculation with virus, resulted in a marked increase in the degree of Tc activity generated. The increase was most pronounced with target cells sensitized with NP peptide 147–158, although it also was apparent with target cells infected with PR/8/34. The specificity of cytotoxicity was affirmed by the fact that no 51Cr release was noted.

![Graph](http://iai.asm.org/ on August 14, 2017 by guest)
with 51Cr-labeled P815 target cells not sensitized with NP peptide 147–158 or PR/8/34 (data not shown).

DISCUSSION

Although CD8$^+$ Ts have been shown to act in a negative and antigen-specific manner to influence the magnitude of the antibody response to SSS-III (4, 5, 10), the major differences between Ts and Tc, which likewise are CD8$^+$ (4) and are generated during the immune response to viral antigens and alloantigens, remain to be more fully defined. The ability of either T cell depleting agents or the infusion of cell suspensions possessing CD4$^+$ Tc activity to reverse the inhibitory effects of Ts in vivo indicates that Ts activated during the immune response to SSS-III are regulatory rather than cytotoxic in their mode of action (reviewed in reference 7). Because of these and other observations, it has been proposed that the magnitude of the antibody response to SSS-III is controlled by two types of regulatory T cells (Ts and Ta) that act in an opposing and competitive manner on B cells to limit the extent to which antigen-stimulated B cells proliferate after immunization (reviewed in references 4, 5, and 10). All experimental data acquired to date are in accord with such a homeostatic model for regulating the magnitude of the antibody response.

Fitch et al. (21) reported that the ability of irradiated spleen cells from mixed leukocyte cultures (MLC) to inhibit the generation of Tc activity is due mainly to the inactivation of alloantigen-bearing stimulator cells by residual Tc present in the irradiated cell suspensions used; this results in a marked decrease in the degree of Tc activity generated when such cells were added at the initiation of MLC. Here, both the suppression noted and the cytotoxic activity expressed are considered to be mediated by the same population of T cells acting under different experimental circumstances. By contrast, the work of Al-Adra and Pilarski (1) provided convincing evidence to indicate that the suppression induced during primary (first-step) MLC reactions is not mediated by Tc. Rather, it is the result of a distinct regulatory process engendered by the ability of both responder and inhibitory cells (Tc and Ts, respectively) to recognize and respond to the same alloantigens on the surface of stimulator cells. The capacity of cyclosporin A to block the activation of Tc, but not the generation of noncytolytic alloantigen-specific Ts, affirms that suppression and cytotoxicity are mediated by separate populations of T cells (16). Also, the ability to induce alloantigen-specific Tc activity in the absence of Tc activity (28), as well as the ability to differentiate between Ts and Tc on the basis of CD11b and CD28 phenotype (25) or sensitivity to inactivation by monoclonal antibodies specific for antigen-specific suppressor factors (18), provides additional support for the view that Ts indeed represent a separate subset of CD8$^+$ T cells.

In the present work, treatment with a preparation of MPL known to abolish the expression of CD8$^+$ Tc activity involved in the antibody response to SSS-III (Table 1) (11) had no adverse effect on either the in vitro expression (Fig. 1) or the in vivo induction (Fig. 2) of CD8$^+$ Tc activity specific for viral antigen. This indicates that Ts and Tc represent functionally distinct subsets of CD8$^+$ T cells which can be differentiated on the basis of their sensitivity to inactivation by MPL. The ability of MPL to increase the frequency or degree of Tc activity expressed (Fig. 2) provides additional support for such a view; it showed that MPL, by permitting the elimination of inhibitory effects of Ts known to be generated during the course of cytotoxic immune responses (1, 16–18, 25, 28), permits the effects produced by Tc to be more fully expressed.

The results of the present work (Fig. 2) indicate that little or no MPL-sensitive suppression is evident during the first week after the inoculation of virus; however, such suppression appears to be expressed during the second week after virus infection, as evidenced by an increase in the degree of Tc activity expressed in mice given four injections of MPL. The ability of MPL to increase the degree of Tc activity generated during the primary (Fig. 2), but not the secondary (Fig. 1), response to viral antigens suggests that such suppression may have a decisive effect during the initial stage of clonal expansion of Tc. Also, since previous studies (8, 9) showed that MPL acts mainly on activated rather than resting or precursor Ts, it is conceivable that greater increases in Tc activity might be achieved by giving the same or larger doses of MPL at different times after exposure to viral antigens. Clearly, more detailed and systematic studies which are beyond the scope of the present work are required to establish the experimental conditions for maximizing the effects of MPL for this immune response.

The ability of MPL to abrogate the expression of Ts activity, without adversely influencing the expression of Tc as well as other T cell functions (8, 9), has profound implications with respect to increasing the development of T cell-mediated immunity. There is much evidence to indicate that Ts activity is generated not only during the course of a normal antibody response (5) but also during UV radiation-induced carcinogenesis (20) and during the immune response to tumor antigens (24, 26, 27); in the latter case, the development of Ts activity, albeit of different antigenic phenotype, has been shown to inhibit the regression of tumor growth mediated by Tc. Obviously, under such conditions, MPL might be used with great advantage to promote or increase the efficiency of tumor immunity. This is being investigated in collaborative studies with other investigators.

REFERENCES

