A 1,937 bp PstI-HindIII fragment containing the ipaR locus was cloned from the large invasion plasmid of Shigella dysenteriae CG097, and its nucleotide sequence was completely determined. The IpaR protein (35 kDa, calculated from the DNA sequence) was synthesized in Escherichia coli χ1411 minicells containing the 1,937-bp PstI-HindIII fragment. To determine the regulatory role of ipaR for ipa genes, we applied genetic complementation experiments using chloramphenicol acetyltransferase (CAT) as reporter. Analyses of CAT activity of the recombinant plasmids containing the 5' flanking sequences of the 24-kDa-protein gene and the ippl, ipaB, ipaC, and ipaD genes defined strong promoters upstream of the ippl and ipaD genes, and the absence of any promoter activity for the ipaC gene. Complementation analyses showed that the CAT activity only under direction of the ippl promoter region increased 1.8-fold in the presence of IpaR protein. On the basis of our data, we suggest that an operon comprising ippl, ipaB, and ipaC is positively regulated by IpaR protein which has a trans effect on a DNA sequence upstream of the ippl promoter.

MATERIALS AND METHODS

Bacterial strains. E. coli HB101 was used as the host in recombinant DNA cloning and for chloramphenicol acetyltransferase (CAT) expression. E. coli JM103 was used as a host for M13 bacteriophage. S. dysenteriae 60R (30) was used as the host for CAT expression. A minicell-producing strain, E. coli χ1411, was used for analysis of plasmid-encoded proteins.

Cloning vectors and DNA methods. Plasmids pUC8 (BRL), pKK232-8 (Pharmacia) (5), and pACYC177 (gift of M. P. Jackson) were used for DNA cloning, and vectors M13mp18 and M13mp19 were used for DNA sequencing. Isolation of plasmid DNA, digestion of restriction enzymes, recovery of DNA fragments from agarose gel, ligation, and transformation were performed as described by Sambrook et al. (17).

Plasmid constructions. Plasmids pWS102, pWS103, and pWS104 previously described (29), containing S. dysenteriae ipa genes, were the source for cloning of ipa promoter regions in this study. The 5' flanking sequence of the 24-kDa-protein gene excised from pWS104 by BamHI and HindIII digestions (396 bp, −317 to +79, with respect to the initiation codon of the 24-kDa-protein gene), a 772-bp HindIII fragment of the 5' flanking sequence of the ippl gene (−605 to +167) from pWS104, a 1,707-bp PvuII-SalI DNA fragment of the 5' flanking sequence of the ipaB gene from pWS102 (−431 to +1171, also containing 105 bp of pUC8 preceding −431), an 850-bp XspI-BamHI fragment of the 5' flanking region of the ipaC gene from pWS102 (−406 to +426, also containing 18 bp of pUC8 following +426), and a 632-bp HindII fragment of the 5' flanking sequence of the ipaD gene from pWS103 (−423 to +209) were inserted into the multiple cloning sites upstream of the CAT gene of the pKK223-8 plasmid, to yield recombinant plasmids pWS396, pWS772, pWS1602, pWS832, and pWS632, respectively (Table 1). The direction of each inserted DNA fragment was identified by analysis of the cleavage patterns generated by the specific restriction endonucleases.

To construct the 5' deletion mutants of the ippl promoter region, a 562-bp BalI-HindIII fragment (−395 to +167, 210-bp deletion from the 5' end of the 772-bp HindIII fragment) and a 414-bp HaeIII-HindIII fragment (−247 to +167, 358-bp deletion from the 5' end of the 772-bp HindIII fragment) were linked to SmaI and HindIII sites of

* Corresponding author.
pKK232-8 to yield pWS210 and pWS358, respectively (Table 1).

To clone the DNA fragment containing the \textit{ipaR} gene into the pACYC177 plasmid, which is compatible with the replication of pKK232-8 for complementation analyses, a 1,972-bp \textit{PvuII} fragment from pWS106 (Fig. 1; 1,879 bp from bp 58 to bp 1937 of Fig. 2 and 93 bp of pUC8 following bp 1937) was inserted into the \textit{HincII} site of pACYC177 to yield pWS1879 (Table 1).

TABLE 1. Characterization of recombinant plasmids

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Vector</th>
<th>Promoter region or gene</th>
<th>Inserted DNA</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pWS106</td>
<td>pUC8</td>
<td>\textit{ipaR}, 9-kDa-protein gene</td>
<td>1,937 bp</td>
<td>pWS106*</td>
</tr>
<tr>
<td>pWS396</td>
<td>pKK232-8</td>
<td>24-kDa-protein gene</td>
<td>396 bp, -317 to +79</td>
<td>pWS104*</td>
</tr>
<tr>
<td>pWS772</td>
<td>pKK232-8</td>
<td>\textit{ippI}</td>
<td>772 bp, -605 to +167</td>
<td>pWS104*</td>
</tr>
<tr>
<td>pWS210</td>
<td>pKK232-8</td>
<td>\textit{ippI}</td>
<td>562 bp, -395 to +167</td>
<td>pWS104*</td>
</tr>
<tr>
<td>pWS358</td>
<td>pKK232-8</td>
<td>\textit{ippI}</td>
<td>414 bp, -247 to +167</td>
<td>pWS104*</td>
</tr>
<tr>
<td>pWS1602</td>
<td>pKK232-8</td>
<td>\textit{ipaB}</td>
<td>1,707 bp, -431 to +1171 and 18 bp from pUC8</td>
<td>pWS102*</td>
</tr>
<tr>
<td>pWS232</td>
<td>pKK232-8</td>
<td>\textit{ipaC}</td>
<td>850 bp, -406 to +426 and 18 bp from pUC8</td>
<td>pWS102*</td>
</tr>
<tr>
<td>pWS632</td>
<td>pKK232-8</td>
<td>\textit{ippD}</td>
<td>632 bp, -432 to +209</td>
<td>pWS103*</td>
</tr>
<tr>
<td>pWS1879</td>
<td>pACYC177</td>
<td>\textit{ipaR}, 9-kDa-protein gene</td>
<td>1,879 bp and 93 bp of pUC8</td>
<td>pWS106, this work</td>
</tr>
<tr>
<td>pWS1009</td>
<td>pACYC177</td>
<td>9-kDa-protein gene</td>
<td>731 bp</td>
<td>pWS106, this work</td>
</tr>
</tbody>
</table>

* Plasmids pWS100, pWS102, pWS103, and pWS104 were described previously (29).

RESULTS

Cloning and DNA sequencing of the \textit{ipaR} region. In the course of DNA sequencing of \textit{ipaB}, \textit{ipaC}, \textit{ipaD}, and \textit{ipaA} genes from the 9-kb fragment (pWS100) of \textit{S. dysenteriae} CG907 (29), a truncated open reading frame (ORF) downstream of the \textit{ipaA} gene was observed. To identify the extent of this ORF, the relevant restriction fragment (1,937-bp \textit{PstI}-\textit{HindIII}) from pWS100 was subcloned into pUC8, and the resulting plasmid was designated pWS106 (Table 1). Its restriction map is shown in Fig. 1. Figure 2 presents the nucleotide sequence of this 1.9-kb fragment. The DNA sequence of an open reading frame beginning at bp 597 and ending at bp 1524 shows homology with that of \textit{ipaR} (or \textit{virB} or \textit{invE}) of both \textit{S. flexneri} and \textit{S. sonnei} (1, 7, 27) and was

designated ipaR. The amino acid sequence of the IpaR protein deduced from the DNA sequences contains 309 amino acids with a molecular mass of 35 kDa. The putative −10 and −35 promoter regions and ribosome binding sites are located upstream from the initiation codon of ipaR. At the 5' end of the 1,937-bp PstI-HindIII fragment, we observed a nucleotide sequence encoding 45 amino acids which overlapped the 3′ end of the ipaA gene (Fig. 2) (25).

As shown in Fig. 2, the nucleotide sequence of the 1,937-bp PstI-HindIII fragment (pWS106) reveals two additional small ORFs located upstream of the ipaR gene. The first ORF begins 3 bp downstream from the terminator codon of ipaA (bp 144 to 379) and encodes 78 amino acids with a calculated molecular mass of 9 kDa. The second ORF begins 24 bp downstream from the terminator codon of the first ORF (bp 405 to 582) and codes for 59 amino acids (molecular mass 6.7 kDa; its amino acids not shown). These two small ORFs were in the same orientation as the ipaR ORF. The putative rho-independent terminator was found at the 3′ end of the 9-kDa ORF but not at the 3′ end of the 7-kDa ORF or the ipaR ORF. Interestingly, a typical signal sequence of 19 amino acids was found on the amino-terminal sequence of the 9-kDa polypeptide but not on that of the 7-kDa or IpaR polypeptide. This signal sequence contains nine hydrophobic residues preceded by two basic residues, lysines, with serine and alanine at the −1 and −3 positions before the cleavage site (i.e., MIKEKILIVACCGIAY'S) (KLS). In addition, the 9-kDa polypeptide contains two hydrophobic transmembrane domains as predicted by our hydrophat analysis. Thus, we speculate that this polypeptide is targeted onto the bacterial membrane by using the same translocation mechanism as those of OmpA, OmpC, OmpF, and alkaline phosphatase of E. coli (28).

Minicell analysis of ipaR region products. Figure 3 shows the result of SDS-PAGE of [15S]-methionine-labeled proteins, isolated from the minicell-producing strain of E. coli χ1411 carrying the plasmid pUC8 with and without insert. SDS-PAGE analysis of proteins made in E. coli χ1411 minicells containing pWS106 showed two polypeptides of 35 and 9 kDa (Fig. 3, lane B). The observed molecular masses of these polypeptides agree with the molecular masses of the products calculated from the nucleotide sequence. However, the 7-kDa polypeptide was not seen in the extract of the minicells containing pWS106. No Shine-Dalgarno sequence is found upstream of the 7-kDa ORF (Fig. 2), and this probably accounts for its absence in the minicell analysis (Fig. 3, lane B).

Characterization of ipa promoters. On the basis of the
homology of ipaR DNA sequences of S. dysenteriae CG097 with those of ipaR (virB, or invE) of both S. flexneri and S. sonnei, which positively regulate the expression of ipaB, ipaC, ipaD, and ipaA (1, 7, 27), and in order to determine whether or not IpaR acts on the promoter regions of S. dysenteriae ipa genes, we first identified the promoters of ipa genes by using CAT as the reporter gene. DNA fragments, containing the 5’ flanking region of each ipa gene with the promoter region and a portion of amino acid codons from the amino terminus, were inserted upstream of the CAT gene of the promoter cloning vector pKK232-8 plasmid in the same orientation as the CAT gene, resulting in the recombinant plasmids pWS396, pWS772, pWS1602, pWS832, and pWS632 (Table 1). These pKK232-8-derivative plasmids containing the 5’ flanking region of ipa genes were found to be stable in E. coli HB101 and S. dysenteriae 60R, and the insertion did not affect the plasmid copy number (10 to 12 copies per chromosome). The function of promoters of the ipa genes was determined by measuring CAT activity of these recombinant plasmids in E. coli HB101 (Fig. 4). Promoterless vector pKK232-8 was included as a negative control (Fig. 4, lane 13). pWS396 (carrying the promoter region of the 24-kDa-protein gene) and pWS632 (carrying the promoter region of the ipaD) produced a high level of CAT activity (Fig. 4, lanes 2 and 11). Low CAT activity was detected in pWS772 (carrying the promoter region of ippI) and pWS1602 (carrying the promoter region of ipaB) (Fig. 4, lanes 4 and 7). CAT was not expressed in pWS832 (carrying the 5’ flanking region of ipaC) (Fig. 4, lane 9). Similar results were obtained when these recombinant plasmids were introduced into S. dysenteriae 60R (data not shown). Strain 60R does not contain the invasion plasmid (30), so it was used as S. dysenteriae background. These results suggest that there are strong promoters in the DNA fragments containing the 5’ flanking sequences of both the 24-kDa-protein gene and ipaD and weak promoters in ippI and ipaB. Furthermore, it appears that the ipaC gene does not have a promoter.

IpaR protein has a trans effect on the 5’ flanking sequence of the ippl gene. To determine whether the ipaR product has a trans effect on the ipa promoter regions identified above, we cloned the 1,972-bp PvuII DNA fragment containing the ipaR locus from pWS106 into the low-copy-number plasmid pACYC177 (P15A of replicon, stringent), yielding pWS1879 (Table 1). pWS1879 containing the ipaR locus is maintained in the same copy number as pACYC177 and stably coexists with pWS396, pWS772, pWS1602, or pWS632 in E. coli HB101 and S. dysenteriae 60R. As shown in Fig. 4, the CAT activity increased 1.8-fold in complementation of pWS1879 (ipaR) with pWS772 (lane 5) in HB101 compared with that of pWS772 only (lane 4). No increased CAT activity was detected in complementation of pWS1879 with pWS396, pWS1602, or pWS632 (Fig. 4, lanes 3, 8, and 12, respectively). Yet no CAT activity was detected in HB101 harboring both pWS832 (carrying the 5’ flanking region of ipaC) and pWS1879 (ipaR) locus (Fig. 4, lane 10). Similar results were observed in the S. dysenteriae 60R background (data not shown). Since pWS1879 is derived from pACYC177, which is maintained in lower copy number than pBR322 (17) and is not amplified by chloramphenicol, it is unlikely that the trans effect of IpaR protein is a result of overexpression of the ipaR gene. Thus, we suggested that IpaR protein has a trans effect only on the promoter region of ippI but not on the promoter regions of the 24-kDa-protein gene, ipaB, and ipaD.

Nucleotide sequence and minicell analysis of the 1,937-bp PstI-HindIII fragment revealed the presence of a 9-kDa polypeptide upstream of the ipaR ORF (Fig. 2 and 3). To determine whether the 9-kDa polypeptide is involved in the regulation, a 731-bp PvuII-EcoRV fragment, containing only the 9-kDa ORF, was obtained from pWS106 and cloned into the HinclI site of the pACYC177 plasmid, yielding pWS1009 (Table 1). No increased CAT activity was observed in complementation of pWS1009 with pWS772 (Fig. 4, lane 6, and Fig. 5), indicating that IpaR but not the 9-kDa polypeptide is involved in the regulation of expression of ipa genes.

Functional properties of the DNA sequence located in the 5’ flanking region of the ippl gene. The above-described results suggest the presence of a DNA sequence responsible to IpaR protein in the 5’ flanking sequence of the ippl gene. To further map the location of this DNA sequence between −605 bp and the initiation codon of ippl, two deletion mutant plasmids, pWS210 (−395 to +167) and pWS358 (−247 to +167), were constructed (Table 1) and their CAT activity was measured in the presence or absence of pWS1879 (ipaR gene). The activation of IpaR was abolished in these two
mutant plasmids (Fig. 5). However, pWS210 (with deletion of 210 bp, −395 to +167) produced a level of CAT activity (over fivefold) higher than that of pWS772, whereas a lower CAT activity was detected in pWS358 (deletion of 358 bp, −247 to +167) than in pWS772 (Fig. 5).

DISCUSSION

Comparison of the nucleotide sequence of the *ipaR* gene of *S. dysenteriae* CG097 with those of *S. flexneri* M90T and YSH6000 and *S. sonnei* revealed a difference of six bases among these species (1, 7, 27). At position 569, the adenine (A) in the *ipaR* or *virB* gene of *S. flexneri* or the *invE* gene of *S. sonnei* was converted into guanine (G) in the *ipaR* gene of *S. dysenteriae*. This alteration occurred within the putative −10 promoter region (i.e., TATAAT in M90T, YSH6000, and *S. sonnei*; TATGAA in CG097). Furthermore, the change of this single base (A to G) produced two direct repeats (CAATATGAATCAATATGAAT) in the *ipaR* promoter region of *S. dysenteriae* CG097. At bp 1106, the change of G in *S. flexneri* M90T or YSH6000 or *S. sonnei* to C in *S. dysenteriae* CG097 resulted in a new amino acid,

![Fluorography of the products of [14C]chloramphenicol obtained in CAT assays (see Materials and Methods) of *E. coli* HB101 containing various recombinant plasmids in the presence or absence of pWS1879 (*ipaR* locus). Lane 1, 0.5 U of chloramphenicol transferase (Sigma); lane 2, pWS396; lane 3, pWS396/pWS1879; lane 4, pWS772; lane 5, pWS772/pWS1879; lane 6, pWS772/pWS1009; lane 7, pWS1602; lane 8, pWS1602/pWS1879; lane 9, pWS832; lane 10, pWS832/pWS1879; lane 11, pWS632; lane 12, pWS632/pWS1879; and lane 13, pKK232-8/pWS1879. Cell extract used: lanes 2 to 8, 11, and 12, 1 μg; lanes 9, 10, and 13, 3 μg. CAT activity was determined as described in Materials and Methods. chl, chloramphenicol; 1-chl, 1-acetyl-chloramphenicol; 3-chl, 3-acetyl-chloramphenicol; 1,3-chl, 1,3-acetyl-chloramphenicol.](image)

![Effect of 5' deletions on CAT expression of pWS772 (containing the promoter region of the *ippI* gene). pWS772, as well as its 5' deletion mutants pWS210 and pWS358, was complemented with (+) or without (−) pWS1879 (*ipaR* locus) or pWS1009 (9-kDa locus). CAT activity was determined as described in Materials and Methods. chl, chloramphenicol; 1-chl, 1-acetyl-chloramphenicol; 3-chl, 3-acetyl-chloramphenicol; 1,3-chl, 1,3-acetyl-chloramphenicol.](image)
histidine, in the IpA of CG097 instead of the glutamate in IpA of M90T, YSH6000, and S. sonnei. At bp 780 and bp 1278, thymine in YSH6000 and S. sonnei was substituted for cytosine in CG097 and M90T. However, these two nucleotide changes did not change the corresponding amino acid; in all cases it was leucine. Downstream from the 3' end of ipA, two additional bases had changed: at bp 1691, A in M90T and YSH6000 was converted to C in CG097 and S. sonnei, and at bp 1763, G in M90T, YSH6000, and S. sonnei was converted to A in CG097.

The promoter cloning vector pKK232-8 has been used to identify and measure relative activities of various promoters (8, 22, 24), since it has three stop codons between the multiple cloning sites and the AUG of the cat gene, which prohibits readthrough into the cat gene (5). Functional analyses of CAT activity of the promoter-CAT derivatives of pKK232-8 containing the 5' flanking sequences of the 24-kDa protein gene or ipp1, ipaB, ipaC, or ipaD defined the strong promoters upstream of the 24-kDa-protein gene and ipaD and the weak promoters upstream of the ipp1 and ipaB genes (Fig. 4). CAT activity was not detected in plasmid pWS832 (a derivative of pKK232-8, the ipaC gene, impC) indicating that the ipaC gene does not contain a promoter, although a putative promoter sequence was found upstream of initiation codon of the ipaC (2, 21, 26, 29). Complementation analyses showed that IpA positively regulates the expression of CAT under the direction of the ipp1 promoter region but not under the direction of the 24-kDa-protein gene, ipaB, or ipaD promoter region. Since the 24-kDa-protein gene, ippl, ipaB, ipaC, and ipaD of S. dysenteriae CG097 are closely linked and arranged clockwise in the large inversion plasmid (29) and the 24-kDa-protein gene and ipaD are both expressed independently from their respective promoters (Fig. 4, lanes 2 and 11), we deduce that the ippl, ipaB, and ipaC genes are organized as an operon, and it appears that the ippl promoter is activated by IpA in trans to express coordinately these three genes, ippl, ipaB, and ipaC. Although the ipaB gene contains a weak promoter (Fig. 4, lane 7), it may be nonfunctional in vivo, because IpA has no effect on it. This is further supported by the work of Venkatesan et al. (26) who detected a 3.3-kb RNA by Northern (RNA) blotting in S. flexneri which encompasses the ippl, ipaB, and ipaC genes. Although the 2.4- and 1.4-kb RNA bands which hybridized with individual ipaB and ipaC probe were also observed, Venkatesan et al. claimed that these two RNAs could conceivably be derived from the 3.3-kb transcript by an unknown processing scheme (26).

A putative –10 sequence (TATAAA) and a putative –35 sequence (TTGAA) which almost match with TATAAT (–10 sequence) and TTGACA (–35 sequence) of E. coli were found at positions –318 bp and –337 bp, respectively. A sequence of dyad symmetry (TGTITITTTAATT AACAA) is found between –605 and –395. IpA polypeptide shows significant sequence homology with the bacteriophage Pl partition protein ParB (7, 27). The ParB has been identified as a DNA-binding protein, and its recognition site consists of a 34-bp DNA sequence including a sequence of dyad symmetry (10). Therefore, it is presumed that IpA polypeptide may bind to TGTITITTTAATT AACAA sequence and render the binding of RNA polymerase to the ippl promoter sequences efficient and constitutive. Alternatively, as a positive regulator, IpA polypeptide may interact, either with DNA sequence or with other proteins such as transcriptional factor(s) or repressor. The interaction of IpA protein with specific DNA sequence or another protein(s) remains to be elucidated.

ACKNOWLEDGMENTS

We thank M. P. Jackson and N. Habib for the strains containing pKK232-8 and pACYC177 plasmids and stimulating discussion. We express our sincere gratitude to J. A. Mosher for help with AMBIS Radioanalytic Imaging System and to M. A. Leon for critical reading of this manuscript. This work was supported by Public Health Service grant AI-25104 from the National Institutes of Health.

REFERENCES