High-Affinity Binding of *Clostridium perfringens* Epsilon-Toxin to Rat Brain

MASAHIRO NAGAHAMA AND JUN SAKURAI*

Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770, Japan

Received 9 October 1991/Accepted 2 December 1991

125I-epsilon-toxin showed high affinity to rat brain homogenates and synaptosomal membrane fractions, having single binding phases with dissociation constants (K_d) of 2.5 and 3.3 nM, respectively. Treatment of synaptosomal membrane fractions with pronase and neuraminidase lowered the binding of the labeled toxin, whereas treatment with trypsin and phospholipase C did not. Heating of the fractions resulted in a decrease in the binding of the toxin. These data suggest that interaction of epsilon-toxin with cell membranes in the brain is facilitated by a sialoglycoprotein. On the other hand, treatment of the membrane fractions with lipase resulted in complete loss of binding, suggesting that the interaction may require an appropriate lipid environment. These data suggest the presence of specific binding sites in brain tissue for epsilon-toxin.

Epsilon-toxin produced by *Clostridium perfringens* type D is thought to be closely related with enterotoxemia of sheep (2, 3, 13). The toxin has been reported to increase vascular permeability in the brain (7). The major pathological changes caused by enterotoxemia appear to occur in the brain, as reported by Hartley (9) and Griner and Carlson (8). We have reported that the toxin is specifically accumulated in the brain of mice after intravenous injection of the toxin (14). Furthermore, we have reported that lethal and pressor activities of epsilon-toxin in mice and rats, respectively (17), and contractile responses of rat-isolated ileum to the toxin (23) were significantly prevented by pretreatment with epsilon-toxin inactivated by modification of carboxyl groups, amino groups, or histidine residues with various agents (15). In the present work, the binding of the toxin to brain tissue of rats and the effects of agent-inactivated epsilon-toxins and presynaptic neurotoxins on the binding of epsilon-toxin to synaptosomal membrane fractions were investigated.

Epsilon-protoxin and -toxin were purified by chromatographic techniques from a fluid culture of *C. perfringens* type D (NCTC 8346) as previously described (22). The toxin was inactivated by treatment with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) in the presence of glycine methyl ester (20), 2,4,6-trinitrobenzensulfonic acid (TNBS) (19), succinic anhydride (SA) (19), tetranitromethane (TNM) (21), N-acetlymidazolamide (NAI) (21), or N-bromosuccinimide (NBS) (17, 18) as described previously. Protein estimations were determined by the method of Lowry et al. (12) by using bovine serum albumin (BSA) as a standard.

Brain homogenates were prepared from rat brains as follows. The brains were collected in ice-cold 0.01 M phosphate buffer (pH 7.0) containing 0.9% NaCl. Homogenization was carried out in a Teflon-glass apparatus at 4°C. After centrifugation (10,000 × g, 15 min) of the homogenates, the supernatant was centrifuged for 10,000 × g for 5 min to remove large debris. The supernatant was centrifuged at 10,000 × g for 15 min, and the resulting pellet was centrifuged in the same way three more times and finally resuspended in a small volume of 0.01 M phosphate buffer (pH 7.0). Synaptosomal membrane fractions from whole rat brain were prepared by the method of Cotman (5). 125I-labeled epsilon-toxin was prepared according to the method of Bolton and Hunter as described previously (1, 14). The labeled toxin retained at least 80% of the lethal activity of the intact toxin.

Properties of 125I-labeled epsilon-toxin binding to rat brain homogenates and synaptosomal membrane fractions were investigated (Fig. 1). When 125I-epsilon-toxin was incubated with the homogenates or the membrane fractions, the bound radioactivity was proportional to the amount of 125I-epsilon-toxin, and the amount of radioactivity bound to the membrane fractions was about three times more than that bound to the brain homogenates. The binding of 125I-epsilon-toxin to the brain homogenates and the membrane fractions was saturable, with half-maximal binding occurring at 0.25 and 0.63 nM toxin, respectively, as shown in Fig. 1. Scatchard analysis for the homogenates indicated only a single phase with a K_d of 2.5 nM and a B_max (maximal binding capacity per membrane protein) of 9 pmol/mg (Fig. 1A), and the analysis for the membrane fractions showed a single phase with a K_d of 3.3 nM and a B_max of 25.5 pmol/mg (Fig. 1B).

To clarify the chemical nature of the toxin receptor(s), the synaptosomal membrane fractions were pretreated with hydrolytic enzymes and subsequently assayed for toxin binding (Table 1). Membrane fractions (12.5 µg) in 500 ml of 20 mM Tris-HCl buffer (pH 7.5) containing 5 mM CaCl_2 were treated with various concentrations of trypsin (porcine pancreas; Sigma), pronase (Streptomyces griseus; Sigma), or neuraminidase (*C. perfringens*; Sigma) at 37°C for 30 min. Synaptosomal membrane fractions (12.5 µg) were treated with phospholipase C purified by the method of Fujii et al. (6) in 500 ml of 20 mM Tris-HCl buffer (pH 7.5) containing 0.9% NaCl and 20 mM CaCl_2 for 30 min or with lipase (porcine pancreas; Sigma) in 500 ml of 10 mM phosphate buffer (pH 8.0) at 37°C for 30 min. After incubation, the membrane fractions were washed twice with 20 mM Tris-HCl buffer (pH 7.5) containing 0.5% BSA and resuspended in 500 ml of the buffer.

At concentrations as high as 100 µg/ml, trypsin and phospholipase C failed to alter toxin binding. Pronase reduced specific binding by 60% at 60 µg/ml. Neuraminidase also lowered binding by 80 and 51% at 40 and 80 µg/ml, respectively. On the other hand, treatment of the toxin with

* Corresponding author.
proteolytic enzymes under these conditions resulted in no effect on the lethal activity of the toxin and no change of mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Lipase decreased binding in a dose-dependent manner to about 5% of that of the control at 64 U/ml. Binding of the toxin to heated membrane fractions was investigated. Heating at 60°C for 10 min resulted in no effect on toxin binding, heating at 70°C caused about a 50% decrease in binding, and heating at 80°C resulted in a complete loss of binding.

Binding of 125I-epsilon-toxin to the membrane fractions preincubated with various amounts of epsilon-toxin inactivated by various agents was investigated. As shown in Fig. 2, TNBS-, EDC-, and SA-inactivated toxins inhibited binding of the labeled toxin to the fractions in a dose-dependent manner, but SA-inactivated toxin did not do so strongly. From these data, the inhibitory concentrations which reduced the binding of the labeled toxin to 50% of control binding (IC50) of these inactivated toxins were determined. The IC50 of prototoxin was approximately 8 pmol. The IC50 of TNBS- and EDC-inactivated toxins were approximately 32 and 36 pmol, respectively. The IC50 of SA-inactivated toxin was approximately 170 pmol. As shown in Fig. 2, 260 pmol of NBS-, NAI-, or TMN-inactivated toxin did not inhibit the binding of the labeled toxin. We have reported that epsilon-toxin causes the release of acetylcholine from cholinergic nerve endings (23). The effect of presynaptic neurotoxins such as β-bungarotoxin or botulinum toxin on the binding of epsilon-toxin to the fractions was investigated (Fig. 3). β-Bungarotoxin blocked the binding of epsilon-toxin to the fractions in a dose-dependent manner, and maximal inhibition was approximately 60% of that of the control under the same conditions. The IC50 of β-bungarotoxin was estimated to be approximately 185 pmol. On the other hand, the IC50 of prototoxin was approximately 8 pmol, showing that the binding of prototoxin is approximately 24-fold higher than that of β-bungarotoxin. Botulinum toxin did not inhibit binding.

Buxton (4) and Worthington et al. (26) have reported that prior administration of formalinized epsilon-toxin inhibited both the increase in vascular permeability caused by the toxin in the brain and the lethal activity of the toxin. We have reported that lethal activity, pressor activity, and contractile responses of rat-isolated ileum to the toxin are prevented by pretreatment with TNBS-, EDC-, SA-, or ethyoxymorfin anhydride-inactivated toxin but not by pretreatment with NBS-, NAI-, or TNM-inactivated toxin (15).

In the present work, TNBS-, EDC-, and SA-inactivated toxins inhibited binding of the labeled toxin to the membrane fractions of rat brain in a dose-dependent manner, but NBS-, NAI-, and TMN-inactivated toxins did not, indicating that the inhibitory effect of these inactivated toxins on biological activities caused by epsilon-toxin is the same as the effect of these inactivated toxins on the binding of epsilon-toxin to the fractions. We have reported that the pretreatment with

TABLE 1. Binding of 125I-labeled epsilon-toxin to synaptosomal membrane fractions treated with various enzymes

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Conc (μg)</th>
<th>Specific binding (cpm/12.5 μg of protein)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (control)</td>
<td>100</td>
<td>6,030</td>
<td>0</td>
</tr>
<tr>
<td>Trypsin</td>
<td>100</td>
<td>6,030</td>
<td>0.3</td>
</tr>
<tr>
<td>Pronase</td>
<td>20</td>
<td>5,747</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>4,780</td>
<td>21.0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>3,633</td>
<td>40.0</td>
</tr>
<tr>
<td>Phospholipase C</td>
<td>100</td>
<td>6,036</td>
<td>0.2</td>
</tr>
<tr>
<td>Neuraminidase</td>
<td>40</td>
<td>4,840</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>3,086</td>
<td>49.0</td>
</tr>
<tr>
<td>Lipase</td>
<td>4</td>
<td>5,022</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1,912</td>
<td>68.4</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>296</td>
<td>95.1</td>
</tr>
</tbody>
</table>

* Synaptosomal membrane fractions were treated as described in the text and were assayed for 125I-labeled-toxin binding activity as described in the legend to Fig. 1. To determine the level of specific binding, the membrane fractions treated with enzymes were preincubated with unlabeled epsilon-toxin for 30 min prior to the addition of the labeled toxin. Each value was obtained from the mean of triplicates, with a variation of 10%.

* Values for lipase are in units per milliliter; all others are in micrograms per milliliter.
epsilon-prototoxin specifically inhibited biological activities of epsilon-toxin and accumulation of the labeled toxin in mouse brain (14). It therefore appears that epsilon-toxin specifically binds to and then acts on the brain.

The labeling of epsilon-toxin was performed through the conjugation of amino groups in the toxin with iodoacetamid ester by the Bolton-Hunter method (1). We have reported that modification of free amino groups in epsilon-toxin by TNBS and SA caused significant loss of the biological activities of the toxin (19) but did not have a significant effect on the binding of the toxin to the receptors (15). It therefore seemed reasonable to examine the binding of epsilon-toxin to the membrane fractions prepared from rat brain by using 125I-epsilon-toxin.

We examined the binding properties of epsilon-toxin to rat brain homogenates and membrane fractions. The data showed that there was a single class of binding site with high affinity in the brain (Kd, 2.5 nM) and in the membranes (Kd, 3.3 nM) and that there were a small number of sites in the brain (Bmax, 9.0 pmol of toxin bound per mg of protein) and in the synaptosomal membranes (Bmax, 25.5 pmol of toxin bound per mg of protein), suggesting that the specific binding site may be located in the synaptosomes. Treatment of the membrane fractions with trypsin and phospholipase C resulted in no effect on binding. On the other hand, binding of the 125I-labeled toxin was significantly reduced by pretreating the fractions with pronase or heat, suggesting that the binding site for the toxin may be a protein. Furthermore, decrease of the binding of the toxin brought about by neuraminidase seems to indicate the importance of sialic acid residues. On the basis of these data, the binding site of the toxin may be a sialoglycoprotein. However, treatment with these enzymes did not cause a complete loss of binding, even when treatment conditions, increases in enzyme concentrations, and incubation times were severe. Therefore, it is unlikely that the site is composed of protein components only. In addition, binding was sensitive to pretreatment of the fractions with lipase, suggesting that interaction of epsilon-toxin with synaptosomal membranes may be facilitated by a lipid component and/or may require an appropriate lipid environment. There also is no denying the possibility that the reduction in binding obtained with lipase may be due to the disruption of membrane properties following the extensive solubilization of membrane proteins by this enzyme.

Beta-Bungarotoxin was reported to inhibit the evoked release of acetylcholine from the terminals of motor neurons (10). Botulinum toxin inhibits the evoked release of the transmitter from cholinergic nerve terminals (24). Furthermore, it has been reported that these toxins exhibit binding to synaptosomes from rat brain (16, 25). In the present work, epsilon-toxin was found to bind specifically to the membrane fractions from rat brain. Beta-Bungarotoxin inhibited the binding of the labeled epsilon-toxin. Botulinum toxin had no effect on epsilon-toxin binding. However, the binding site of beta-bungarotoxin is reported to be different from that of botulinum toxin (16). The binding site of epsilon-toxin seems specific for epsilon-toxin in the sense that competition binding was observed with the presynaptically acting protein beta-bungarotoxin but not with botulinum toxin.

This work was supported by a grant from the Ministry of Education, Science and Culture of Japan.
REFERENCES