Variation in Hydrogen Peroxide Sensitivity between Different Strains of Neisseria gonorrhoeae Is Dependent on Factors in addition to Catalase Activity

TIMOTHY M. ALCORN,1 HE-YI ZHENG,1 MICHAEL R. GUNTHER,1 DANIEL J. HASSETT,1,2† AND MYRON S. COHEN1,2*

Departments of Medicine1 and Microbiology and Immunology,2 The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7030

Received 7 October 1993/Returned for modification 28 December 1993/Accepted 1 March 1994

Catalase, which catalyzes the reduction of hydrogen peroxide to oxygen and water, is considered the primary defense of Neisseria gonorrhoeae against exogenous hydrogen peroxide. Recent reports have demonstrated drastically different sensitivities of the organism to hydrogen peroxide ranging from greater than 80% survival after challenge with 30 mM hydrogen peroxide to less than 0.001% survival after challenge with 10 mM hydrogen peroxide. In this study, we have examined the hydrogen peroxide sensitivities of six clinical gonococcal isolates. The study demonstrates that the variations in gonococcal hydrogen peroxide sensitivities previously reported can be attributed to (i) differences in experimental methods employed or (ii) variation among different gonococcal strains. All of the gonococcal isolates examined generated similar concentrations of catalase, implying that the differences in the H2O2 sensitivity observed may depend on factors in addition to catalase.

Neisseria gonorrhoeae is a gram-negative, human mucosal pathogen. Gonococci can grow in both aerobic and anaerobic atmospheres in vitro and in vivo (4, 5, 16). However, the organism clearly encounters phagocytic cells, including macrophages and neutrophils, during infection. Under aerobic conditions phagocytes utilize molecular oxygen to generate oxidants with antimicrobial activity (7, 10). During the respiratory burst of the phagocyte, a membrane-bound NADPH oxidase reduces molecular oxygen by one electron to superoxide (O2−) (2). Previous studies have shown that N. gonorrhoeae is highly resistant to extracellular O2− (1) probably because exogenous O2− cannot traverse bacterial membranes (8). However, within acidic environments (such as neutrophils), O2− spontaneously disproportionates to a stronger oxidant, hydrogen peroxide (H2O2). In fact, the neutrophil phagosomal concentration of H2O2 has been estimated to be as high as 100 mM (11). H2O2 can freely diffuse across bacterial membranes and can lead to mutagenic events caused by single-strand nicks in DNA (13), as well as oxidation of critical respiratory chain components (17). Therefore, the oxygen-dependent killing of gonococci by phagocytic cells would be expected to be dependent, in part, on the ability of the organism to respond to increased levels of exogenous H2O2 (18).

Two previous studies have examined the sensitivity of N. gonorrhoeae to H2O2. Using N. gonorrhoeae FA1090 cells, Hassett et al. (9) observed less than 0.001% survival after exposure of the bacteria to 10 mM H2O2. Using bacteria harvested from solidified gonococcal culture (GC) medium, Johnson et al. (14) observed greater than 50% survival of strains 28B1 and F62, which were exposed to 30 mM H2O2. In the present study we have attempted to determine the differences between these results. Gonococcal strain FA1090 was provided by P. F. Sparling, University of North Carolina at Chapel Hill, Chapel Hill. Strain 28B1 is a clinical isolate provided by S. R. Johnson.

FIG. 1. Percent survival of gonococci after challenge with various concentrations of H2O2. Each result is the mean and one standard deviation of three separate experiments. The circles indicate the survival of strain FA1090, and the triangles indicate the survival of strain 28B1. Bacteria were grown either in Trypticase soy broth without agitation (—) or in GC broth (---) with agitation prior to H2O2 challenge.
TABLE 1. Hydrogen peroxide sensitivities and catalase activities of various gonococcal strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>2.5 mM</th>
<th>5 mM</th>
<th>10 mM</th>
<th>20 mM</th>
<th>Catalase activity (U/mg)</th>
<th>[Iron] (lg/CFU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA1090</td>
<td>3 ± 0.7</td>
<td>0.4 ± 0.2</td>
<td>0.06 ± 0.009</td>
<td>0.007 ± 0.002</td>
<td>1.290 ± 45</td>
<td>0.027</td>
</tr>
<tr>
<td>28B1</td>
<td>73 ± 3</td>
<td>20 ± 6</td>
<td>3 ± 1</td>
<td>0.08 ± 0.03</td>
<td>1.203 ± 27</td>
<td>0.17</td>
</tr>
<tr>
<td>L4401</td>
<td>63 ± 10</td>
<td>26 ± 6</td>
<td>4 ± 1</td>
<td>0.6 ± 0.2</td>
<td>1.144 ± 62</td>
<td>0.25</td>
</tr>
<tr>
<td>L8800</td>
<td>40 ± 5</td>
<td>3 ± 1</td>
<td>0.3 ± 0.009</td>
<td>0.006 ± 0.003</td>
<td>1.169 ± 42</td>
<td>1.19</td>
</tr>
<tr>
<td>L2370</td>
<td>64 ± 11</td>
<td>8 ± 1</td>
<td>0.4 ± 0.06</td>
<td>0.04 ± 0.01</td>
<td>1.178 ± 86</td>
<td>ND</td>
</tr>
<tr>
<td>L6200</td>
<td>58 ± 5</td>
<td>15 ± 3</td>
<td>1 ± 0.4</td>
<td>0.05 ± 0.002</td>
<td>1.213 ± 40</td>
<td>ND</td>
</tr>
<tr>
<td>L4933</td>
<td>66 ± 2</td>
<td>30 ± 1</td>
<td>3 ± 2</td>
<td>0.7 ± 0.2</td>
<td>1.248 ± 63</td>
<td>ND</td>
</tr>
</tbody>
</table>

a Bacteria were grown according to the method of Hassett et al. (9). Values are the means and standard deviations of five separate experiments. Catalase activity was determined spectrophotometrically at 240 nm according to the method of Beers and Sizer (3) by using 17.6 mM H2O2. One unit of activity is that which decomposes 1 μM H2O2 per min at room temperature. ND, not determined.

Centers for Disease Control and Prevention, Atlanta, Ga. Strains L2370, L4401, L6200, and L8800 are clinical isolates from the Wilson County Sexually Transmitted Disease Clinic (Wilson, N.C.). The methods employed by Hassett et al. (9) and Johnson et al. (14) differed in the type of growth media used to propagate the bacteria and the specific phase of growth achieved by the organisms prior to challenge with H2O2. Hassett et al. (9) grew the bacteria aerobically in GC broth until mid-logarithmic phase and, after diluting the bacteria into fresh, prewarmed GC broth, exposed the gonococci to various concentrations of H2O2 for 15 min at 37°C. After exposure, the bacteria were diluted in GC salts containing catalase and spread on GC agar plates for enumeration of viable CFU. Johnson et al. (14) grew the bacteria in a liquid layer of Trypticase soy broth over a solid medium of GC agar. In both methods, the concentration of bacteria was adjusted to approximately 1 × 10^7 to 5 × 10^7 CFU/ml prior to exposure to H2O2.

As shown in Fig. 1, the method employed to grow the bacteria had a significant effect on the H2O2 sensitivities of the two gonococcal strains. Strain FA1090 was more sensitive to H2O2 than 28B1 with either method. However, both strains FA1090 and 28B1 were more sensitive after aerobic growth in GC broth. A likely explanation for this difference is in the metabolic activity of the bacterium at the time of H2O2 challenge. Imlay and Linn (12) have shown that metabolically inactive (starved) Escherichia coli organisms are more resistant to H2O2 than are equivalent numbers of mid-logarithmic-phase organisms. A similar decrease in H2O2 sensitivity has been observed with stationary-phase Pseudomonas syringae (15). It has been suggested that stationary-phase bacteria possess fewer of the cellular equivalents required to reduce H2O2 to HO-, a reaction which leads to DNA strand breakage (13).

Experiments were conducted in order to determine the aerobic peroxide sensitivities of clinical isolates of N. gonorrhoeae. As shown in Table 1, there was little difference in the H2O2 sensitivity of gonococcal strains at low concentrations of H2O2 (2.5 and 5.0 mM), with the exception of FA1090. It should be noted that strain FA1090 was isolated from a patient with disseminated gonococcal infection, whereas the other strains tested were urethral isolates.

We observed significant variation in the sensitivity of gonococcal strains after challenge with 20 mM H2O2 (Table 1). These differences were surprising since all test strains possessed similar catalase specific activities (Table 1). Johnson et al. (14) demonstrated that catalase-negative gonococci are significantly more sensitive to H2O2 than isogenic catalase-positive organisms. Likewise, we (18) have previously shown that catalase-negative gonococci demonstrate remarkably greater sensitivity to exogenous H2O2 and stimulated human neutrophils than catalase-positive strains. However, the present results make it clear that catalase is only one of several factors determining gonococcal sensitivity to H2O2.

We have previously shown that the iron concentration of N. gonorrhoeae affects susceptibility to redox stress (6). The intracellular iron concentrations of several strains of N. gonorrhoeae were measured to see if there was a correlation with H2O2 sensitivity. Bacteria were grown to mid-logarithmic phase in 50 ml of GC broth with agitation, and the concentration of bacteria was determined. Cells were harvested by centrifugation, and the resulting cell pellet was washed once with Hanks' balanced salt solution, solubilized in 10 ml of a 10% sodium dodecyl sulfate solution (pH 1.0), and boiled for 10 min in an acid-washed flask. The total iron concentration in each sample was determined by standard neutron activation analysis (14 h of irradiation at 1.5 × 10^13 n/cm²-s; Nuclear Energy Services, Nuclear Engineering Department at N.C. State University). As shown in Table 1, there is no correlation between H2O2 sensitivity and intracellular iron concentration.

The intracellular localization of catalase could affect the sensitivity to H2O2, as previously observed with E. coli (12). However, we have shown catalase to be limited to the cytoplasm in N. gonorrhoeae (18). Other factors which could affect the sensitivity of N. gonorrhoeae to exogenous H2O2 include intracellular glutathione (calculated to be 17 mM in gonococci [1]) and the concentration of endogenous reactive oxygen species and reducing equivalents. In conclusion, this study demonstrates that the sensitivity of gonococci to H2O2 is highly dependent upon the experimental conditions. In particular, differences in the growth of the gonococci prior to challenge with H2O2 can markedly affect its survival.

This work was supported by grant U01AI31496-01 from the National Institutes of Health.

We thank Jack Weaver, Head of Nuclear Services, N.C. State University, for assistance in the iron measurements.

REFERENCES


