Chlamydia trachomatis Growth Stimulates Interleukin 8 Production by Human Monocytic U-937 Cells

ANNE BIANCHI,1*, CHRISTINE DOSQUET,2 SCARLETT HENRY,1 MARIE-CLAUDE COUDERC,2 FRANCOISE FERCHAL,1 and CATHERINE SCIEUX1

Laboratoire de Bactériologie-Virologie-Hygiène1 and Centre de Transfusion Sanguine,2 Hôpital Saint-Louis, Université Paris VII, Paris, France

Received 1 August 1996/Returned for modification 17 September 1996/Accepted 20 February 1997

Growth of Chlamydia trachomatis serotypes L2 and L3 in a human monocytic cell line, U-937, increased the rate of interleukin 8 (IL-8) release 100-fold. Heat-killed chlamydiae induced a 10-fold-lower level of production of IL-8. IL-8 may play an important role in the inflammatory reaction to chlamydial infection.

Chlamydia trachomatis is an obligate intracellular pathogen with a primary tropism toward mucosal epithelium. It is known to be the causative agent of trachoma in developing countries and of sexually transmitted diseases worldwide. Recent progress in the study of host immunity strongly suggests that an immunopathologic component is involved in the pathogenesis of chlamydial diseases and in the development of fibrosis and sequelae such as blindness or tubal infertility (13). Few authors have investigated the in vivo effects of Chlamydia on the production of inflammatory cytokines (1, 3, 9, 10, 21, 22). A local T-lymphocyte Th-1-like protective response has been observed after intravaginal infection of mice with the mouse pneumonitis biovar of C. trachomatis (2). In previous in vitro studies, C. trachomatis was found to induce the production of interleukin 1 (IL-1) by human blood monocytes (18), the release of tumor necrosis factor alpha (TNF-α) from monocyte-derived macrophages (11), and the production of IL-1 and TNF-α by human peripheral blood mononuclear cells (7, 18). Another important cytokine is the chemokine IL-8, which plays a major role in the inflammatory response to several microorganisms mostly by activating polymorphonuclear recruitment at the foci of infection (8, 17). This activation may contribute to both microbial clearance and tissue damage (12, 15, 17). To our knowledge, no previous study has reported spontaneous IL-8 secretion by U-937 cells. The reproducible and chronic C. trachomatis infection established in U-937 cells with serotype L2 yielded typical intracytoplasmic inclusions, as detected by DFA and high-level chlamydial-antigen production in the culture supernatants (Fig. 1 and 2). In contrast, serotype L3 induced only few and nontypical intracytoplasmic inclusions and little or no antigen production in the culture supernatants (Fig. 2).

To measure the amount of IL-8 present in the cell culture supernatants, frozen stocks of U-937 cells, infected with C. trachomatis serotype L2 or L3, were used to infect U-937 cells as described above. The multiplicity of infection was 1:25 for serotype L2 and 1:100 for serotype L3. Cultures were incubated for 8 days in three different assays. Every 1 or 2 days, cells were smeared by cytocentrifugation, growth of C. trachomatis was visualized by DFA, and culture supernatants were collected and aliquoted at −70°C until the cytokine assay. Supernatants were tested by EIA for IL-8 (Quantikine; R & D Systems, Minneapolis, Minn.) and for TNF-α, IL-1β, and IL-6 (all with EASIA; Medgenix, Fleurus, Belgium). The minimum detectable levels are estimated to be 2 pg/ml for IL-1β, 3 pg/ml for IL-6, and 5 pg/ml for TNF-α. Each sample was tested in duplicate in each assay. Supernatants of control cells were negative for TNF-α, IL-1β, and IL-6 but contained low concentrations of IL-8, ranging from 0 to 224 pg/ml (Fig. 3). To our knowledge, no previous study has reported spontaneous IL-8 secretion by U-937 cells. Results obtained after infection with C. trachomatis serotypes L2 and L3 confirmed most previous studies showing amounts of TNF-α ranging from 10 to 12 pg/ml (L2 serotype) and 14 to 78 pg/ml (L3 serotype), showing...
amounts of IL-1β ranging from 50 to 130 pg/ml (L2 serotype) or no detection (L3 serotype) and showing no detection of IL-6 during the course of infection (7, 11, 18). Infection of cells with the L2 serotype of *C. trachomatis* dramatically increased IL-8 concentrations in the supernatants of infected cells from 0.7 ng/ml at day 1 to 3.5 ng/ml at day 8 (Fig. 3). The L3 serotype of *C. trachomatis*, which has less ability to replicate than the L2 serotype, induced lower levels of IL-8 production, which ranged from 0.1 ng/ml at day 1 to 2.2 ng/ml at day 8 (Fig. 3). The early release of IL-8 (within 1 day) with both L2 and L3 suggested that the interaction of cells with the bacteria could be the triggering stimulus. To confirm this hypothesis, heat-killed chlamydiae or heterologous LPS was also tested for cytokine induction in control experiments. The serotype L2 inoculum was heat killed at 100°C for 1 h and used to test for a homologous LPS effect. For heterologous LPS stimulation, cells were grown in the presence of 100 ng of LPS from the Rc mutant of *Escherichia coli* J5 (Sigma Chemical Co., St. Louis,
Mo.) per ml. Supernatants of cells stimulated with heat-killed chlamydiae or LPS from E. coli were negative for TNF-α, IL-1β, and IL-6. Heat-killed chlamydiae induced lower levels of IL-8 production than live bacteria during the 8 days of the experiment (0.4 to 0.8 ng/ml) (Fig. 3). When cell cultures were stimulated with heterologous LPS, IL-8 production was equivalent to that of nonstimulated control cells (Fig. 3). These data suggested that intracellular replication of the bacteria was required for enhancing IL-8 production by the infected cells.

In vivo studies suggest that IL-8 may be an important component of local immunity in response to bacterial infections (5, 14). IL-8 production by cells infected with C. trachomatis is probably a complex process and may be associated with the production of growth factors, such as transforming growth factor β, could be important effectors of fibrosis and ultimately tubal obstruction. However, the extrapolation of these results to chlamydial infection calls for further studies, and this hypothesis clearly has to be investigated in animal models as well as under clinical conditions.

We thank F. Morinet and P. H. Lagrange (Laboratoire de Bactériologie-Virologie-Hygiène, Hôpital Saint-Louis, Paris, France), M. Lembastard and G. Milon (Unité d’Immunoimmunophysiologie Cellulaire, Institut Pasteur de Paris), J. M. Alonso (Institut Alfred Fournier, Paris, France), and G. Rawadi and S. Roman-Roman (Laboratoire de Bactériologie, Université de Bordeaux II).

This work was supported by a grant from the Association Nationale de Recherche sur le Sida (no. 241).

REFERENCES