Oral Immunization with Attenuated Vaccine Strains of *Vibrio cholerae* Expressing a Dodecapeptide Repeat of the Serine-Rich *Entamoeba histolytica* Protein Fused to the Cholera Toxin B Subunit Induces Systemic and Mucosal Antiamebic and Anti-*V. cholerae* Antibody Responses in Mice

EDWARD T. RYAN,¹ JOAN R. BUTTERTON,¹ TONGHAI ZHANG,² MEGHAN A. BAKER,¹ SAMUEL L. STANLEY, JR.,³ ⁴ AND STEPHEN B. CALDERWOOD°¹⁴⁺

Infectious Disease Unit, Massachusetts General Hospital, Boston, Massachusetts 02114; Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110; and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115

Received 14 November 1996/Returned for modification 3 January 1997/Accepted 30 April 1997

Entamoeba histolytica is a significant cause of morbidity and mortality worldwide. The serine-rich *E. histolytica* protein (SREHP) is a surface-expressed trophozoite protein that includes multiple hydrophilic tandem repeats. A purified fusion protein between the dodecapeptide repeat of SREHP and cholera toxin B subunit (CTB) has previously been shown to be immunogenic in mice after oral inoculation when cholera toxin is coadministered as an immunoadjuvant. We engineered a live attenuated El Tor *Vibrio cholerae* vaccine strain, Peru2, to express the SREHP-12–CTB fusion protein to the supernatant from either a plasmid [Peru2 (pETR5.1)] or from a chromosomal insertion (ETR3). Vector strains were administered orally to germfree mice that were subsequently housed under nongermfree conditions; mice received one (day 0) or two (days 0 and 14) inoculations. No immunoadjuvant or cholera holotoxin was administered. Mice that received two inoculations of Peru2(pETR5.1) had the most pronounced antiamebic systemic and mucosal immunologic responses. Less marked, but significant, anti-SREHP serum immunoglobulin G antibody responses were also induced in mice that received either one or two oral inoculations of strain ETR3. Anti-*V. cholerae* responses were also induced, as measured by the induction of serum vibriocidal antibodies and by serum and mucosal anti-CTB antibody responses. These results suggest that *V. cholerae* vector strains can be successful delivery vehicles for the SREHP-12–CTB fusion protein, to induce mucosal and systemic antiamebic and anti-*V. cholerae* immune responses. The magnitude of these responses is proportional to the amount of SREHP-12–CTB produced by the vector strain.

Entamoeba histolytica is an intestinal protozoan parasite of humans that causes significant morbidity and mortality worldwide (24). The invasion of the colonic surface by *E. histolytica* trophozoites can cause severe colitis. Hematogenous dissemination of trophozoites can cause extraintestinal, usually hepatic, abscess formation. The attachment of trophozoites to intestinal epithelial cells appears to be a crucial first step in initiating this pathophysiology (15, 19, 25). Parenteral vaccination with a number of surface-expressed *E. histolytica* antigens has shown that immune responses protective against invasive hepatic amebiasis can be induced in a standard gerbil animal model (30–32, 40, 42). The serine-rich *E. histolytica* protein (SREHP) is one such antigen that has been shown to induce protective immunity (39–43). SREHP is a surface-expressed amebic glycoprotein that contains multiple hydrophilic dodecapeptide and octapeptide tandem repeating subunits; its function remains unclear (33, 34, 40). Parenteral vaccination of gerbils with an approximately 200-amino-acid SREHP moiety fused to maltose-binding protein (SREHP-MBP) resulted in protection of 64 to 100% of animals after direct hepatic inoculation with virulent amebic trophozoites (40, 42). In addition, passive administration of anti-SREHP antibodies prevented amebic liver abscess formation in a severe combined immunodeficiency mouse model of amebiasis and was correlated with the ability of antiserum to block *E. histolytica* adhesion (39).

Although induction of systemic immune responses may be crucial in preventing or limiting extraintestinal manifestations of amebiasis (29), the induction of protective mucosal immune responses at the intestinal surface could abrogate trophozoite attachment and possibly limit or prevent intestinal and extraintestinal amebiasis (25). Expression of heterologous antigens by attenuated strains of bacteria at mucosal surfaces is one method of inducing potent mucosal immune responses against heterologous antigens. Indeed, protective immune responses against amebiasis have been induced in gerbils after oral inoculation with an attenuated strain of *Salmonella typhi* expressing the SREHP-MBP fusion protein. This immunologic induction was directly correlated with the level of expression of fusion protein by vector strains (10, 43).

The use of live attenuated strains of *Vibrio cholerae* to deliver heterologous antigens to mucosal surfaces has many advantages over other vector systems. *V. cholerae* is noninvasive but still elicits prominent and long-lasting systemic and mucosal immune responses (13, 17, 23). Well-studied attenuated strains which previously have been used successfully to deliver heterologous antigens for induction of immunologic responses at mucosal surfaces have been developed (5, 6, 16, 18, 20, 22, 35, 38). Certain heterologous antigens can be fused to the nontoxic B subunit of cholera toxin (CTB) and can thus be...
secreted to the extracellular milieu by V. cholerae and taken up by intestinal microfold (M) cells (2, 3, 11, 13, 21, 28). Vaccination of mice with a recombinant fusion protein of a dodecapeptide, derived from a repeating subunit of SREHP, fused to the amino terminus of CTB (SREHP-12–CTB) has previously been shown to induce both mucosal and systemic anti-SREHP and anti-CTB immune responses when the fusion protein was administered orally with subclinical doses of cholera holotoxin as an immunoadjuvant (41).

In this study, we wished to examine whether SREHP-12–CTB could be expressed in vivo, by a live oral attenuated V. cholerae vector, to stimulate an immune response comparable to administration of the purified protein with immunoadjuvant. We utilized an attenuated El Tor V. cholerae vaccine strain (Peru2) and expressed SREHP-12–CTB from both chromosomal and plasmid constructs. We made use of a recently described germfree mouse model of V. cholerae infection to assess anti-amebic and anti-V. cholerae mucosal and systemic humoral immune responses (8). We found that attenuated strains of V. cholerae can act as successful delivery vehicles for induction of anti-amebic and anti-V. cholerae mucosal and systemic immune responses even without cholera holotoxin and that successful induction of an anti-amebic response was directly related to the level of expression of the SREHP-12–CTB fusion protein from the vaccine constructs.

MATERIALS AND METHODS

Bacterial strains and media. The bacterial strains and plasmids used in this study are detailed in Table 1. All strains were maintained at −70°C in Luria-Bertani (LB) medium (27) containing 15% glycerol. LB medium contained ampicillin (100 μg/ml), streptomycin (100 μg/ml), or X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside; 80 μg/ml; International Biotechnologies Inc., New Haven, Conn.) as appropriate. All cultures were grown at 37°C with aeration.

Genetic methods. Isolation of plasmid and bacterial chromosomal DNA, restriction enzyme digestion, agarose gel electrophoresis, and Southern hybridization of DNA separated by electrophoresis were performed by standard biological techniques (27). GeneScreen Plus hybridization transfer membranes (DuPont Biotechnologies, NEN Research Products, Boston, Mass.) were used as described in the manufacturer’s protocol for Southern hybridization. DNA sequencing was performed at the DNA Sequencing Core Facility, Department of Molecular Biology, Massachusetts General Hospital, by use of ABI Prism D Terminator cycle sequencing with AmpliTaq DNA polymerase FS with an ABI 377 DNA Sequencer (Perkin-Elmer Applied Biosystems Division, Foster City, Calif.). Plasmids were transformed into Escherichia coli JM105 by standard techniques or were electroporated into V. cholerae, with a Gene Pulser (Bio-Rad Laboratories, Richmond, Calif.), as instructed by the manufacturer, and modified for electroporation into V. cholerae as described previously (12). Electroporation conditions were 2,500 V at 25-μF capacitance, producing time constants of 4.6 to 4.8 ms. DNA restriction endonucleases, T4 DNA ligase, the Kloneq fragment of DNA polymerase I, and calf intestinal alkaline phosphatase were used as described in the manufacturers’ specifications. Restriction enzyme-digested chromosomal and plasmid DNA fragments were separated on 1% agarose gels; the required fragments were cut from the gel under UV illumination and recovered by the freeze-squeeze technique (36). Vent DNA polymerase thermocyclic reaction products were prepared in volumes of 100 μl containing 10 mM KCl, 10 mM (NH₄)₂SO₄, 20 mM Tris-HCl (pH 8.8 at 24°C), 0.1% Triton X-100 (1× thermal-Mol reaction buffer). 200 μM each deoxynucleoside triphosphate, 0.25 μM each primer, 4 mM MgSO₄, and 1 U of Vent DNA polymerase (New England Biolabs, Beverly, Mass.). The temperature cycling for the amplification reaction was performed in a PTC-100 programmable thermal controller thermocycler (MJ Research Inc., Watertown, Mass.) as follows: 94°C for 5 min, 25 cycles of 94°C for 1 min (denaturing), 50°C for 1 min (annealing), 72°C for 1 min (extension), and 72°C for 5 min (terminal extension).

Genetic constructions. Plasmid pVA-II has been described previously (41) and contains the dodecapeptide repeat of SREHP upstream and in frame with the OmpA2 leader sequence and downstream and in frame with the OmpA2 leader peptide, with the fusion under the transcriptional control of timidly arranged E. coli lpp and lac promoters. Plasmid pETR5 was constructed by cloning an 840-bp fragment containing lppP, lacPO→ompA2::SREHP-12::ctxB, amplified by PCR from pVA-II and incorporating the C9I fragment of pETR5 containing lppP, lacPO→ompA2::SREHP-12::ctxB, and the transcriptional terminator, made blunt ended and ligated into the StuI site of pETR5.1.

TABLE 1. Bacterial strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant genotype or phenotype</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. cholerae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6709</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETR3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli JM105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pKK223-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pBR322-based plasmid containing a multiple cloning site between lacP and the rrnB transcriptional terminator. AmpR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pMCSETR1B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pKK223-3 with the tac promoter replaced by a fragment containing additional restriction sites (BamHI-NcoI-EcoRV-BglII-SpeI-EcoRI-PstI); AmpR</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pHIII ompA2 plasmid, with lppP,lacPO→ompA2::SREHP-12::ctxB; AmpR</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pETR5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pMCSETR1B with an 840-bp BglII-PstI fragment amplified from pVA-II, encoding lppP; lacPO→ompA2::SREHP-12::ctxB cloned between BglII and PstI sites; AmpR</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>p6891MSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pBR327-based plasmid containing approximately 8 kbp of V. cholerae lacZ with a multiple cloning site inserted into the KpnI site; AmpR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pETR5.1</td>
<td>1.8-kbp BglII-PstI fragment of pETR5, encoding lppP, lacPO→ompA2::SREHP-12::ctxB and the rrnB transcriptional terminator, made blunt ended and ligated into the StuI site of pETR5.1; AmpR</td>
<td>This study</td>
</tr>
</tbody>
</table>

* AmpR, ampicillin resistant; SmR, streptomycin resistant.
nitrocellulose membranes (Amersham Life Sciences, Buckinghamshire, England) with a semidy blotting apparatus (Hoefer Scientific Instruments, San Francisco, Calif.). Immunoreactive proteins were visualized after sequential incubation with polyclonal rabbit anti-cholera toxin antiserum (1:1,000, Sigma Chemical Co., St. Louis, Mo.) and goat anti-rabbit immunoglobulin G (IgG) conjugated alkaline phosphatase (1:2,000; Sigma) and then stained for phosphatase activity as described previously (14). Comparison was made to purified CTB (0.5 μg; Sigma).

Whole-cell extracts were prepared by freeze-thawing and sonication, and periplasmic extracts were prepared as described previously (14). SREHP-12-CTB was measured in cell fractions or unconcentrated supernatants by a quantitative enzyme-linked immunosorbent assay (ELISA) for CTB. Serial dilutions of samples in phosphate-buffered saline–Tween 20 (PBS-T; 0.05% Tween 20; 20[PBS-T]) or undiluted (1:2,187) were applied to 96-well microtiter plates previously coated with 100 ng of type III ganglioside (Sigma) per well in 50 mM carbonate buffer (pH 9.6) and previously blocked with PBS–1% bovine serum albumin (Sigma; PBS-BSA). Plates were incubated at 37°C for 1 h and then washed with PBS-T. A 1:2,000 dilution of goat anti-CTB (List Biological Laboratories, Inc., Campbell, Calif.) in PBS-T was applied to each well, and the plates were incubated at each for 1 h. After the wells were washed in PBS-T, a 1:4,000 rabbit anti-goat IgG–horseradish peroxidase conjugate (Southern Biotechnology Associates) and detection as described above. The development of an animal model for V. cholerae infection, by employing the oral inoculation of germ-free mice that are subsequently housed in nongermfree conditions, has been described recently (8). Immediately upon removal of mice from their germfree shipper, four groups of five to six germfree female Swiss mice, 3 to 4 weeks old, Taconic Farms, Inc., Germantown, N.Y.) were orally inoculated with approximately 109 organisms of various V. cholerae strains resuspended in 0.5 M NaHCO3 (pH 8.0) via gastric intubation. Three mice from each group were killed at 24 h, 5 days, and 1 week postinoculation. The entire periplasmic extract was recovered, and 20 μl aliquots were plated on thiosulfate-citrate-bile salts-sucrose medium, inoculated, and also moved to nongermfree conditions to act as unvaccinated controls. Two additional mice were removed from their germfree shipper, left uninoculated, and also moved to nongermfree conditions to act as unvaccinated control animals. Three groups of five to six mice each received a second oral inoculation on day 14. To assess colonization, fresh stool samples were collected immediately upon passage from all mice every 48 h throughout the study, resuspended in 500 μl of LB medium, vortexed, and allowed to settle. One-hundred-microliter aliquots were plated on thiosulfate-citrate-bile salts-sulfate medium, as well as LB medium containing either streptomycin or both streptomycin and ampicillin, to determine the optimal passage of the V. cholerae strains of interest.

Immunological sampling. Mice were sacrificed on day 28, at which time blood was collected via retroorbital and intracardiac puncture. Blood was allowed to coagulate, and sera was inactivated by heating the sera to 56°C for 1 h. Fifty-microliter aliquots of sera were plated on thiosulfate-citrate-bile salts-sulfate medium, and the colonies were counted with a dissection scope and semidy blotting apparatus (Hoefer Scientific Instruments, San Francisco, Calif.). Measured optical densities were compared to a standard curve provided by dilutions of purified CTB (List) in PBS-T.

RESULTS

Construction of vector strains. Oral, live attenuated vaccine vectors of V. cholerae were derived from Peru2, a Peruvian El Tor strain deleted for AtrSI and the entire CTX genetic element (26, 37). A genetic fusion of ompAA2::SREHP-12::cxtB and rrnB was placed under the transcriptional control of the tandemly arranged E. coli lpp and lac promoters within the V. cholerae lacZ gene on plasmid pMCs6891 to create plasmid pETR5.1. After introduction of pETR5.1 into Peru2, the construct was maintained in plasmid form by maintaining ampicillin selection pressure [Peru2(pETR5.1)]. The fragment containing lpp3, lacPO::ompAA2::SREHP-12::cxtB, and rrnB was also introduced within the chromosomal copy of the Peru2 lacZ gene by marker exchange to create vaccine strain ETR3. The lac promoter is expressed in V. cholerae without any induction because this species lacks a functional lacI gene.

Expression of SREHP-12-CTB by V. cholerae vector strains in vitro. To ascertain that the SREHP-12-CTB fusion protein was secreted to the supernatant by V. cholerae, supernatant fractions were separated by gel electrophoresis; the gels were stained with Coomassie blue (data not shown) or developed by Western blotting with antiserum directed against CTB

![FIG. 1. Western blot of supernatants from Peru2 (lane 1), Peru2(pETR5.1) (lane 2), and purified CTB (0.5 μg) (lane 3), developed with antiserum to CTB. The numbers on the right indicate the approximate positions of molecular size markers (in kilodaltons).](http://iai.asm.org/)

Measurement of anti-CTB and anti-SREHP systemic and mucosal antibody responses. To detect anti-CTB antibody responses, microtiter plates were coated with purified CTB (0.5 μg) per well in 50 mM sodium carbonate buffer (pH 9.6). Following overnight incubation at room temperature and three washes in PBS-T of each plate, 100 ng of CTB in carbonate buffer was applied to each well and the plates were again incubated overnight at room temperature. Following, to assess adsorption of CTB, the plates were blocked with PBS-BSA. To detect anti-CTB IgG antibody in sera, duplicate samples of serial dilutions (1:160 to 1:8,192) of sera were plated in wells of microtiter plates previously coated with ganglioside-CTB and blocked with PBS-BSA. The plates were incubated at room temperature overnight and washed in PBS-T. A 1:2,000 dilution of goat anti-mouse IgG conjugated to biotin (Kirkegaard & Perry Laboratories [KPL], Gaithersburg, Md.) was applied to each well, and the plates were incubated overnight at room temperature. After the plates were washed in PBS-T, a 1:4,000 dilution of streptavidin-horseradish peroxidase conjugate (Zymed Laboratories Inc., South San Francisco, Calif.) was added to each well and the plates were incubated at room temperature for 2 h. Following washing in PBS-T, the plates were developed for peroxidase activity as described above and the optical density at 405 nm was measured. End dilutions were calculated as the highest dilution of test sample producing an optical density greater than three times the mean of 16 control wells to which PBS-T without serum was added. To detect anti-CTB IgA responses in sera, bile, and stool, duplicate serial twofold dilutions of serum (1:125 to 1:6,400), bile (1:150 to 1:76,800), and stool (1:1 to 1:512) samples in PBS-T were added to microtiter wells. Anti-CTB IgA responses were assayed by use of a 1:2,000 goat anti-mouse IgA–biotin conjugate (KPL) as the detection antibody. To measure the total amount of IgA in each stool preparation, 96-well ELISA plates were coated with 0.1 ml of 1:5 dilutions of stool aliquots. The plates were blocked with PBS-BSA, and total IgA was detected with a 1:2,000 dilution of biotin-labelled goat anti-mouse IgA (KPL) followed by streptavidin-horseradish peroxidase (Zymed), with development done as described above. Comparisons were made to a mouse IgA standard (Kappa TEPC 15; Sigma).
(Fig. 1). The SREHP-12–CTB fusion protein was found to migrate with a molecular mass of approximately 15 kDa as reported previously (41), slightly larger than native CTB, as expected. To verify that SREHP-12 and CTB remained fused after secretion by

\textit{V. cholerae}, an ELISA was performed on supernatant fractions using GM\textsubscript{1} ganglioside as the capture molecule and mouse monoclonal anti-SREHP 2D4 antibody used for detection. The supernatant from Peru\textsubscript{2}(pETR5.1) gave a significantly higher reading than the other samples did. * \(P < 0.05 \) OD, optical density.

![Figure 2](http://iai.asm.org/)

FIG. 2. Results of ELISA of supernatant and control samples, with GM\textsubscript{1} ganglioside as the capture molecule and mouse monoclonal anti-SREHP 2D4 antibody used for detection. The supernatant from Peru\textsubscript{2}(pETR5.1) gave a significantly higher reading than the other samples did. * \(P < 0.05 \) OD, optical density.

The amount of SREHP-12–CTB secreted to the supernatant by the vaccine strains was quantitated by an ELISA technique standardized to the CTB component. Unconcentrated supernatant samples of ETR3 contained approximately 10 ng of SREHP-12–CTB per ml per optical density unit at 600 nm of overnight culture. Unconcentrated supernatant samples of Peru\textsubscript{2}(pETR5.1) grown in the presence of ampicillin contained approximately 1 to 10 \(\mu \)g/ml/optical density unit at 600 nm, approximately 100- to 1,000-fold more than that expressed from the single copy of the gene in ETR3.

Cellular localization studies performed by quantitative ELISA disclosed that all of the SREHP-12–CTB produced by ETR3 was localized to the supernatant (Fig. 3A). In a culture of Peru\textsubscript{2}(pETR5.1), approximately 82% was localized to the supernatant, 16% was localized to the periplasm, and 2% was localized to the cytosolic fraction (Fig. 3B).

Intestinal colonization of mice with vector strains. Recent reports have suggested that heterologous antigens expressed from plasmid constructs in \textit{V. cholerae} can result in immune responses even without ongoing antibiotic selective pressure or the use of balanced lethal mutations to maintain the plasmid (1, 7). To ascertain the length of intestinal passage of \textit{V. cholerae} vector strains and to measure the duration of passage of organisms containing plasmid pETR5.1, freshly passed mouse stools were analyzed on selective media (Fig. 4). After the first oral inoculation, mice continued to pass \textit{V. cholerae} in their stool for 7 to 14 days. After the second inoculation, mice cleared \textit{V. cholerae} from their stools more rapidly, within 2 days. Among those mice that received Peru\textsubscript{2}(pETR5.1), \textit{V. cholerae} containing the plasmid was present in stool for 3 to 5 days after the first inoculation and for 1 day after the second inoculation. Mice that received Peru\textsubscript{2}(pETR5.1) continued to pass the \textit{V. cholerae} vector in a similar fashion to mice that received Peru\textsubscript{2} or ETR3, despite the loss of the plasmid.

Measurement of serum vibriocidal antibodies. To ascertain the ability of the mice to mount an immune response to the vector construct used for delivery of the heterologous antigen, vibriocidal antibodies directed against the bacteria itself were measured. Responses were compared with those of control mice (uninoculated germfree mice that were housed identically). On day 28, mice that had received a single inoculation of Peru\textsubscript{2} or ETR3 on day 0 had low titers of vibriocidal antibody (Fig. 5). Mice that had received an additional inoculation on

![Figure 3](http://iai.asm.org/)

FIG. 3. Percentage of total SREHP-12–CTB localized to various cellular compartments. (A) Strain ETR3; (B) strain Peru\textsubscript{2}(pETR5.1).
with Peru2(pETR5.1) did not differ from recovery following inoculation presented (hatched bars). Recovery of the vector strain itself following inoculation recovered from stool following inoculation on day 0 and day 14, are also represented (hatched bars). Recovery of the vector strain itself following inoculation with Peru2(pETR5.1) did not differ from recovery following inoculation with Peru2 or ETR3.

day 14 had increased vibriocidal antibody levels consistent with a booster effect.

Immunogenicity of the SREHP-12–CTB fusion protein. Day 28 immunological responses observed in mice that received a single inoculation of ETR3 were compared to those observed in mice that received a single inoculation of the control strain Peru2. Similarly, immunological responses in mice that received two inoculations of vector strains ETR3 or Peru2 (pETR5.1) were compared to those observed in mice that received two inoculations of the control strain Peru2.

As shown in Fig. 6A, the most pronounced anti-CTB IgG serum antibody response was observed in mice that received two inoculations of Peru2(pETR5.1) ($P < 0.001$). Mice that received two inoculations of ETR3 also had a significant response ($P < 0.001$). The highest anti-SREHP IgG serum antibody response was observed in mice that received two inoculations of Peru2(pETR5.1) ($P < 0.001$) (Fig. 7A). Mice inoculated with the vaccine strain ETR3 also developed significant serum anti-SREHP IgG antibody responses on day 28 after single ($P < 0.02$) or double ($P < 0.001$) oral inoculations (Fig. 7A). Serum from day 28 analyzed for anti-SREHP IgA response was not significantly different from that of control animals (data not shown); however, a significant anti-CTB IgA response was detected in sera from day 28 from mice that received two inoculations of Peru2(pETR5.1) ($P < 0.001$) (Fig. 6B).

Stool preparations from all mice were found to contain equivalent amounts of total IgA (data not shown). The most prominent IgA anti-CTB response in stool was observed in mice that received two inoculations of Peru2(pETR5.1) ($P < 0.001$), although significant but smaller IgA responses were observed in mice that received one ($P < 0.01$) or two inoculations of ETR3 ($P < 0.01$) (Fig. 6C). Similarly, the most prominent anti-SREHP IgA response in stool was observed in mice that received two inoculations of Peru2(pETR5.1) ($P < 0.01$) (Fig. 7B).

The most prominent IgA anti-CTB response in bire collected on day 28 was observed in mice that received two inoculations of Peru2(pETR5.1) ($P < 0.001$) or two inoculations of ETR3 ($P < 0.01$) (Fig. 6D). A biliary IgA anti-SREHP was observed only in mice that received two inoculations with Peru2 (pETR5.1) ($P < 0.01$) (Fig. 7C).

DISCUSSION

A number of in vitro studies suggest that E. histolytica trophozoite-target cell contact is required for omega-mediated cytolyis of mammalian cells (15, 19, 25). Salivary secretory IgA from patients previously infected with E. histolytica has been shown to inhibit amebic adhesion to mammalian cells (9), and the ability of antisera to protect against amebic liver abscess formation in the severe combined immunodeficiency mouse model of amebiasis is associated with the ability of antisera to block E. histolytica adhesion (39). Antibodies directed against a surface-expressed E. histolytica trophozoite protein, SREHP, have been shown to block amebic adherence (33, 34, 39). A SREHP-12–CTB fusion protein has recently been shown to induce mucosal and systemic immune responses after oral inoculation in mice when subclinical doses of cholera holotoxin are coadministered as an immunoadjuvant. In an attempt to develop a safe, effective vaccine that induces immune responses against E. histolytica, we examined the ability of live, attenuated vector strains of V. cholerae expressing SREHP-12–CTB to induce antiamebic and anti-V. cholerae mucosal and systemic immune responses.

We were able to develop V. cholerae vector constructs that expressed the SREHP-12–CTB fusion protein from a stable chromosomal insertion or from a plasmid construct. We found that V. cholerae vector strains secreted SREHP-12–CTB to the supernatant, that SREHP-12 and CTB moieties remained attached during the secretory process, and that the amount of fusion protein produced was highest in strains expressing SREHP-12–CTB from a plasmid construct. We found that V. cholerae vector strains expressing SREHP-12–CTB effectively colonized mice after oral inoculation and that even in the absence of ongoing plasmid selection pressure, mice continued to pass strains of V. cholerae containing plasmid constructs for

![Graph showing aggregate percentages of mice with V. cholerae recovered from stool cultures following oral inoculations on days 0 and 14 with Peru2, ETR3, and Peru2(pETR5.1).](http://iai.asm.org/)

![Bar chart showing geometric mean titer (GMT) of vibriocidal antibody responses on day 28 following no, one (day 0), or two (days 0 and 14) oral inoculations with various strains.](http://iai.asm.org/)
3 to 5 days in stool after oral inoculation. We found that the ability to induce an immunological response was correlated with the amount of SREHP-12–CTB being produced, with the most prominent anti-SREHP-12 and anti-CTB immune responses being observed in mice that received the *V. cholerae* vector strain containing the plasmid construct [Peru2(pETR5.1)].

We were able to demonstrate significant antiamebic (anti-SREHP) and anti-*V. cholerae* (anti-CTB) systemic and mucosal immunologic responses and the induction of vibriocidal antibody responses. The successful induction of both mucosal and systemic anti-SREHP-12 immune responses by this vector system could provide for two levels of protection against infection with *E. histolytica*. Mucosal anti-SREHP-12 immune responses could inhibit attachment of *E. histolytica* trophozoites to intestinal epithelial cells, and systemic immunity could limit pathogenicity should invasive intestinal and extraintestinal amebiasis still occur.

In summary, we have shown that *V. cholerae* vaccine vector strains can act as successful delivery vehicles for inducing systemic and mucosal immune responses against SREHP-12–CTB even when no concomitant immunoadjuvant is administered. Such a vaccine system may be able to provide dual protection against the action of two important enteric pathogens, *V. cholerae* and *E. histolytica*. We have also shown that the newly developed mouse model of *V. cholerae* infection can be used to judge the ability to elicit an immune response to heterologous antigens produced by *V. cholerae* vector strains and that plasmid constructs can be used to induce immune responses in mice to heterologous antigens expressed by *V. cholerae* vector strains.

FIG. 6. Anti-CTB ELISA results on day 28 for mice inoculated with Peru2, ETR3, or Peru2(pETR5.1). “(S)” following the strain designation indicates groups of mice that received a single inoculation (day 0). “(D)” following the strain designation indicates groups of mice that received two inoculations (days 0 and 14). Results are reported as the end geometric mean titers (GMTs). Bars depict standard errors of the mean for each group. + and #, *P* < 0.01 and *P* < 0.001, respectively, compared with control group (Peru2; single or double dose). (A) Serum IgG; (B) serum IgA; (C) stool IgA; (D) bile IgA.
To increase the amount of heterologous antigen produced by *V. cholerae* vector strains, we are evaluating antigenic expression from a number of high-level in vivo-activated promoters in *V. cholerae* vector strains. The development of a stable balanced lethal mutation system to maintain plasmids in *V. cholerae* could also be employed. The possibility of boosting the immunological response with immunoadjuvants and the evaluation of additional immunogenic antigens from *E. histolytica* are also being examined. To judge the ability to induce protective immunity against invasive amebiasis with vaccine constructs employing *V. cholerae* as the delivery vehicle, new animal models or adaptations of current animal models will need to be pursued, to allow assessment of protective efficacy following challenge.

ACKNOWLEDGMENTS

This work was supported by Public Health Service grants AI40725 (S.B.C.), AI30084 (S.L.S.), KO8 AI01386 (J.R.B.), and KO8 AI01332 (E.T.R.) and by National Research Service Award T32 AI07061-18 (E.T.R.), all from the National Institute of Allergy and Infectious Diseases. S.L.S. is the recipient of Research Career Development Award AI01231 from the same institute. This work was also supported by a grant from the WHO/UNDP Programme for Vaccine Development, GPV-I518281, to S.L.S.

REFERENCES

Editor: S. H. E. Kaufmann