Essential Role of Gamma Interferon in Survival of Colon Ascendens Stent Peritonitis, a Novel Murine Model of Abdominal Sepsis

NIKO ZANTL,¹,² ANNETTE UEBE,¹,² BRIGITTE NEUMANN,¹ HERMANN WAGNER,¹ JÖRG-RUDIGER SIEWERT,² BERNHARD HOLZMANN,¹,² CLAUS-DIETER HEIDECKE,² AND KLAUS PFEFFER¹*

Institute of Medical Microbiology, Immunology and Hygiene¹ and Department of Surgery, Klinikum rechts der Isar,² Technical University of Munich, D-81675 Munich, Germany

Received 15 October 1997/Returned for modification 16 December 1997/Accepted 12 February 1998

Bacterial invasion of body cavities often leads to organ failure, septic shock, and death despite aggressive surgical intervention, adequate antibiotic therapy, and intensive life support (2, 11, 58). Two related but distinct mechanisms of dysregulation of the immune system have been considered to cause this fatal process. On the one hand, it is assumed that an exuberant infection results in a decreased ability of the immune response to mount an antimicrobial defense, finally leading to immune paralysis (57, 58). On the other hand, the hypothesis has been put forward that in sepsis, microbial components activate a strong immune response resulting in an overproduction of harmful immune mediators (6, 10). Insights into these complicated pathophysiological processes have, at least in part, been gained from animal studies. Generally, two types of experimental settings can be distinguished: (i) bolus injections of bacteria, microbial components (endotoxin, lipoteichoic acid, and mannans) or toxins (superantigens) (34, 38, 46), and (ii) injury models with the consecutive liberation of endogenous microbial flora from a septic focus (18). Both types of models attempt to mimic distinct aspects of the pathological changes typically encountered in sepsis as observed in human patients, such as hypo- or hyperthermia, tachycardia, tachypnea, organ failure, and lethal outcome (2, 10). Most of the current experimental treatment strategies have been derived from results gained by bolus injection-type experiments (30, 34, 38, 46, 51, 55). Thus, numerous studies identified cytokines as crucially involved in the pathogenesis of sepsis, and blockade of these cytokines was shown to ameliorate the challenge with bacterial endo- or exotoxins (41, 46, 47, 52, 55). The prototype of a host-damaging cytokine is considered to be tumor necrosis factor (TNF-α) (6, 56). Anti-TNF-α antibodies protect from lipopolysaccharide (LPS) or superantigen-induced shock (7, 38), TNF-α injection leads to a septic shock-like syndrome (51), and infusion of anti-TNF antibodies into baboons protects from septic shock triggered by Escherichia coli infection (52). Furthermore, TNFRp55−/− mice are protected from bolus shock induced by LPS–D-GalN and Staphylococcus aureus superantigen–D-GalN (41). A harmful role in sepsis was also assigned to gamma interferon (IFN-γ) since it was observed that IFN-γ or IFN-γR-deficient mice show decreased susceptibility to high-dose-bolus LPS injection (14, 30).

Surprisingly, recent results of clinical studies have not provided clear evidence that systemic anti-inflammatory therapies with corticosteroids (13), anti-LPS treatment (29, 61), or the neutralization of host mediators such as TNF-α or interleukin-1 (IL-1) (1, 24–26, 48) are improving the clinical course of sepsis. Neutralization of host mediators such as TNF-α with corticosteroids (13), anti-LPS treatment (29, 61), or the neutralization of host mediators such as TNF-α or interleukin-1 (IL-1) (1, 24–26, 48) are improving the clinical course of sepsis. Neutralization of host mediators such as TNF-α with corticosteroids (13), anti-LPS treatment (29, 61), or the neutralization of host mediators such as TNF-α or interleukin-1 (IL-1) (1, 24–26, 48) are improving the clinical course of sepsis. Neutralization of host mediators such as TNF-α with corticosteroids (13), anti-LPS treatment (29, 61), or the neutralization of host mediators such as TNF-α or interleukin-1 (IL-1) (1, 24–26, 48) are improving the clinical course of sepsis. Neutralization of host mediators such as TNF-α with corticosteroids (13), anti-LPS treatment (29, 61), or the neutralization of host mediators such as TNF-α or interleukin-1 (IL-1) (1, 24–26, 48) are improving the clinical course of sepsis.
followed by a pronounced hypodynamic, hypometabolic state (2, 18). Interestingly, in accordance with clinical studies, animal models of the injury type performed in LPS-resistant mice (37) or using antagonism of host mediators such as TNF-α (anti-TNF-α, TNF receptor p55 [TNFRp55]-immunoglobulin Fc protein), or IL-1 receptor antagonist (4, 17, 22, 23, 36) could not provide clear evidence for an improved survival from sepsis. TNF-α binds to two distinct cell surface receptors, TNFRp55 and TNFRp75 (50). It has been shown that TNFRp55-deficient animals are highly susceptible to infection with intracellular bacteria such as listeria and mycobacteria (28, 41), whereas TNFRp75-deficient animals appear not to be substantially impaired in their host defense (20). IFN-γ is a potent inducer of macrophage activity and may have dichotomous functions in sepsis (3, 54). IFN-γ has been shown to be of relevance as a mediator of septic shock (14), but recent clinical data suggest that IFN-γ administration may have a beneficial effect on the outcome of sepsis (16). IFN-γ increases the antigen-presenting capacity of mononuclear phagocytes and enhances the production of proinflammatory cytokines by monocytes and macrophages triggered by LPS (3, 9, 54). IFN-γ is induced synergistically by IL-12 and TNF-α and appears to be negatively regulated by IL-10 (35, 45, 53). Animal studies investigating the therapeutic application of IFN-γ in injury-type models revealed an increased mortality (39).

Present knowledge regarding the pathophysiology of sepsis, and especially the study of supportive and causal therapies, has to be reevaluated by using more relevant animal models that are designed to reliably mimic human sepsis (42, 44). The prime aim of this study was to establish a novel surgical animal model closely resembling the pathophysiology found in human postoperative abdominal sepsis and reevaluate the roles played by cytokines in sepsis. To investigate the regulation of these cytokines in sepsis, the kinetics of IL-10, IL-12, TNF-α, and IFN-γ induction were investigated in various tissues in a novel injury-type animal model of bacterial sepsis (colon ascendens stent peritonitis [CASP]). Furthermore, mice deficient in TNFRp55 or IFN-γR were subjected to CASP to address the role of TNF-α and IFN-γ on a molecular level in sepsis.

MATERIALS AND METHODS

Mice. For all experiments, 8- to 12-week-old female mice (weight 20 to 25 g) were used. C57BL/6 mice were purchased from Charles River, Sulzfeld, Germany. TNF-α-deficient (C57BL6 background) (41) and IFN-γR-deficient (C57BL6 × 129Sv12 background) mice (32) as well as control mice were bred in a conventional animal facility. Prior to surgery, mice were kept for at least 1 week in the animal facility to recover after shipment. All experimental procedures were performed according to German animal safety regulations.

CASP CASPI, and sham surgery. The surgical procedure of CASP was performed as described recently (60). For anesthesia, ether (Hoechst, Frankfurt, Germany) or narkeutan-xylaxan (WDT, Garbsen, Germany) was used. Prior to surgery, a venous catheter (14, 16, or 22 gauge, as indicated; Venflon; BOC, Germany) or narketan-xylopan (WDT, Garbsen, Germany) was used. Prior to anesthesia, mice were preincubated for 30 min with 100 μl of PBS containing 1% (wt/vol) bovine serum albumin (Sigma Chemical, Eggenstein, Germany), 5% (vol/vol) normal rabbit serum (Dianova, Hamburg, Germany), and 1% (vol/vol) Fc receptor block (rat anti-mouse CD16/CD32 Fc III/II receptor; Jackson ImmunoResearch Laboratories, West Grove, Pa.). Following centrifugation (1,000 × g, 10 min, 4°C), the plasma was removed and incubated at 10 min for 75°C to inactivate LPS binding proteins. The plasma samples were diluted 1:2 with PBS (BioWhittaker, Heidelberg, Germany). The LPS content of each sample was determined in duplicate, and control duplicates were spiked with a given amount of standard E. coli LPS (0.05 endotoxin units [EU/ml] to control the inhibitory activity of the samples. For each determination, a standard curve, determined by dilution of standard E. coli LPS (0.005, 0.05, 0.5, 5, and 25 EU/ml) in heat-inactivated plasma from naive control mice, was established. LPS measurements were performed on an enzyme-linked immunosorbent assay (ELISA) reader (BioWhittaker) at 37°C. The LPS levels were evaluated by using BioWhittaker computer software.

Measurement of TNF-α. Animals were sacrificed at indicated time points, and blood was collected by sterile puncture of the caudal vein, using heparinized syringes (sodium heparinate; Ratiopharm, Ulm, Germany). Following centrifugation (7,000 × g, 10 min, 4°C), the plasma was removed and incubated at 75°C for 10 min to inactivate LPS binding proteins. The plasma samples were diluted 1:2 with PBS (BioWhittaker, Heidelberg, Germany). The LPS content of each sample was determined in duplicate, and control duplicates were spiked with a given amount of standard E. coli LPS (0.05 endotoxin units [EU/ml] to control the inhibitory activity of the samples. For each determination, a standard curve, determined by dilution of standard E. coli LPS (0.005, 0.05, 0.5, 5, and 25 EU/ml) in heat-inactivated plasma from naive control mice, was established. LPS measurements were performed on an enzyme-linked immunosorbent assay (ELISA) reader (BioWhittaker) at 37°C. The LPS levels were evaluated by using BioWhittaker computer software.

Measurement of TNF-α. Animals were sacrificed at indicated time points, and blood was collected by sterile puncture of the posterior caval vein, using heparinized syringes (sodium heparinate; Ratiopharm). Plasma was removed after centrifugation of blood samples (7,900 × g, 10 min, 4°C). The amount of TNF-α in the plasma was determined according to the protocol of the manufacturer with a murine TNF-α ELISA kit purchased from Genzyme, Rüsselsheim, Germany.

Immunohistochemistry of organ cryosections. Tissue samples were snap-frozen in 2-methylbutane (Merck, Darmstadt, Germany) prechilled in liquid nitrogen. Cryostat sections (8 μm; Leica, Nussdorf, Germany) were fixed for 10 min in ice-cold acetone (Merck) and air dried at room temperature. For reduction of nonspecific staining and inactivation of endogenous peroxidase, sections were precubated for 30 min with 100 μl of PBS containing 1% (vol/vol) bovine serum albumin (Sigma Chemical, Egggenstein, Germany), 5% (vol/vol) normal goat serum (Jackson ImmunoResearch Laboratories, West Grove, Pa.), 0.01% (vol/vol) hydrogen peroxide (Merck), and 10% (vol/vol) avidin D solution (Vector Laboratories, Burlingame, Calif.). For immunohistochemistry of the colon, 0.5% (vol/vol) Fc receptor blocker (rat anti-mouse CD16/CD32 Fc III/II receptor; Pharmingen, Homburg, Germany) was included in addition. Consecutively, avidin was blocked by 10% (vol/vol) bioin solution (Vector Laboratories) in PBS containing 1% (vol/vol) bovine serum albumin. After three washes, sections were incubated for 30 min with 100 μl of biotin-conjugated primary antibody as indicated (CD11b, Mac-1; chain; all from Pharmingen). After three washes with PBS, slides were incubated with ExtrAvidin-peroxidase (peroxidase-conjugated Sigma). Sections were then incubated for 10 min with 5% (vol/vol) 3-aminoethylcarbazole (5 mg/ml Sigma) in N,N-
dimethylformamide (Merck) and 0.015% (vol/vol) hydrogen peroxide in 50 mM acetate buffer. After three washes with PBS, the sections were counterstained with Mayer’s hematoxylin (Sigma) for 10 min, washed in PBS, and mounted with glycerol-gelatin (Sigma). The stained sections were photographed with a Leica DMBRE photomicroscope (Leica).

TABLE 1. Oligonucleotide primers used for internal competitive semiquantitative RT-PCR

<table>
<thead>
<tr>
<th>Gene encoding</th>
<th>Orientation</th>
<th>Primer sequence</th>
<th>Size (bp) of amplified product</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-actin</td>
<td>Sense</td>
<td>5'-ATG CAT GAT CAT ATC CTT GCT-3'</td>
<td>569</td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>5'-ATG AGG GTA GCC TCT GTG CAG GT-3'</td>
<td></td>
</tr>
<tr>
<td>TNF-α</td>
<td>Sense</td>
<td>5'-GAC AAG CTT GTA GCC CAC GTG ATA-3'</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>5'-ACA CCT ATT CCC TCT ACA GAG CAA-3'</td>
<td></td>
</tr>
<tr>
<td>IL-12p40</td>
<td>Sense</td>
<td>5'-CGT GCT CAT GGC TGG TGC AAA G-3'</td>
<td>576</td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>5'-GAA CAC ATG CCC ACT TGC GTG-3'</td>
<td></td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Sense</td>
<td>5'-GAA AGC GTA GAA AGT CGT AAT AAC T-3'</td>
<td>388</td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>5'-ATC AGC AGC GAC TCT TCT TCC GTG TCT-3'</td>
<td></td>
</tr>
<tr>
<td>IL-10</td>
<td>Sense</td>
<td>5'-ACC TGG TAG AAG GTA TGC CCC AGG CA-3'</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Antisense</td>
<td>5'-CTA TGC AGT TGA AGA TGT CAA A-3'</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

CASP surgery as a murine model for peritonitis and sepsis. CASP surgery was developed as an easily reproducible and highly standardized method for the investigation of sepsis (60). For the induction of peritonitis, a stent of a given diameter is punctured through the ascending colon thus allowing intraluminal bacterial transmigration and invasion of the peritoneal cavity (Fig. 1). Depending on the diameter of the stent inserted, the mortality rate of mice after CASP surgery varied (Fig. 2). CASP surgery with a 22-gauge-diameter stent (22G stent) led to a mortality rate of 38% (5 of 13 mice); insertion of a 18G or 14G stent resulted in 64% (28 of 44 mice) or 100% mortality, respectively (n = 20; P < 0.001 versus 18G stent, P < 0.003 versus 22G stent). No significant statistical difference was found between the two groups operated with 18G and 22G stent needles (P = 0.135). However, the results clearly demonstrate that the CASP procedure using different stent sizes allows the generation of both lethal and sublethal experimental groups. In the 14G CASP group, all mice reliably developed clinical signs of severe sepsis between 24 and 48 h after surgery. In contrast, after sham CASP (laparotomy and extraluminal fixation of the stent; see Materials and Methods) surgery, all mice survived without clinical signs of sepsis (Fig. 2 and data not given). In summary, CASP surgery provides a highly standardized and homogeneous animal model designed for the study of bacterial peritonitis and sepsis.

Bacterial spread after CASP surgery. In human patients, systemic spread of bacteria from a septic focus during sepsis is a well-known phenomenon. To examine whether implantation of a stent into the colon ascendens mimics a septic focus, the spread of intestinal bacteria into different anatomical compartments of sham- and CASP-operated mice was monitored. Bac-
terial counts were determined by plating serial dilutions of peritoneal lavage fluid, suspensions of homogenized organs (liver, lungs, and spleen), and blood specimens on solid bacterial growth medium. Between 3 and 12 h after 14G CASP surgery, an exponential increase of bacterial CFU was observed in the peritoneal cavity; thereafter a plateau was reached (Fig. 3A). In sham-operated mice, no bacteria were detected in any specimen. Furthermore, 12 h after 14G CASP surgery, blood and organs were readily invaded by bacteria of the endogenous murine intestinal flora (enterococci, Bacillus spp., and enterobacteriaceae such as E. coli, Proteus spp., or Enterobacter spp.) (Fig. 3B).

CASP1. CASP1 surgery was performed to determine whether surgical removal of the septic focus would prevent a lethal outcome after induction of peritonitis (14G CASP). In CASP1, the stent was surgically removed and the defect in the ascending colon was closed (Fig. 1). As shown in Fig. 4, removal of the implanted stent after 3 h rescued all mice, whereas CASP1 after 9 h could not revert the lethal course of peritonitis. Accordingly, 12 h after CASP surgery, blood and organs were readily invaded by bacteria of the endogenous murine intestinal flora (enterococci, Bacillus spp., and enterobacteriaceae such as E. coli, Proteus spp., or Enterobacter spp.) (Fig. 3B).

Recruitment of inflammatory cells after CASP. Inspection of the peritoneal cavity after CASP surgery revealed typical hallmarks of inflammation such as redness, swelling of the bowel, and fibrinous deposits. To scrutinize the inflammatory reaction, infiltration of granulocytes and macrophages into the colonic wall and the mesenteric lymph nodes was monitored at given points in time after CASP surgery. Ascending colon and mesenteric lymph nodes were removed from CASP- and sham-operated mice after 3, 6, and 12 h. Tissue sections were stained with a monoclonal antibody to anti-Mac-1α, an antigen that is expressed on granulocytes, macrophages, and natural killer cells (49). As early as 3 h after 14G CASP, infiltration of Mac-1α-positive cells could be observed in the wall of the colon and in the subcapsular sinus of the mesenteric lymph node (Fig. 5). After 6 and 12 h, a massive infiltration was present in the subserosa, muscle, and submucosal parts of the colonic wall. In the mesenteric lymph nodes, the accumulation of Mac-1α-positive cells increased after 6 h; after 12 h, Mac-1α-positive cells were numerous in the interfollicular sinuses (Fig. 5). In sham-operated mice, significant infiltration of inflammatory cells was not detectable at any time. Thus, bacterial invasion occurring after CASP surgery acts as a massive
stimulus for the recruitment of inflammatory cells in the local tissue and draining lymph nodes.

Endotoxinemia and systemic inflammatory response after CASP surgery. Endotoxin or LPS contained in the cell wall of gram-negative bacteria is a potent inducer of inflammatory cytokines (46). Mice that underwent 14G CASP surgery were sacrificed, and blood was collected to measure the amounts of LPS in the systemic circulation. LPS amounts in nontreated mice and sham-operated mice were below the detection limit of 0.1 EU/ml at all time points (Fig. 6A and data not shown). In contrast, significant amounts of LPS could be detected as early as 2 h after CASP (1.9 EU/ml), increased after 5 h (2.7 EU/ml) and 12 h (19 EU/ml), and remained elevated until death (14.5 EU/ml) (Fig. 6A).

As an indicator of the systemic response to endotoxin, TNF-α and IFN-γ serum levels were determined by ELISA. In parallel to the increase in LPS, an induction of TNF-α was found in mice that underwent 14G CASP (Fig. 6B). Serum TNF-α amounts were below 0.1 ng/ml in naive and sham-operated mice 0, 3, 6, 12, and 24 h after surgery. However, 3 h after CASP surgery, operated mice had detectable serum TNF-α amounts that increased up to 24 h after CASP. In contrast, IFN-γ could not be detected in the serum in CASP or sham-CASP-operated mice at any time (data not shown).

To investigate the response of other cytokines, the regulation of a set of inflammatory cytokines was examined by a sensitive semiquantitative internal competitive RT-PCR approach. In the first set of experiments, TNF-α, IL-12p40, IFN-γ, and IL-10 transcription in the spleens of CASP mice was compared to that in spleens of sham-operated mice. Equilibration of cDNAs was performed by β-actin PCR (Fig. 7A). After 6 h, a significant upregulation of TNF-α, IL-12p40, IFN-γ, and IL-10 could be observed in the spleens of mice that

FIG. 4. Survival after stent removal (CASPI). CASP surgery employing a 14G stent was performed at a time point defined as 0 h. After 3, 5, or 9 h, the stent was surgically removed and the colonic wall was closed. Sham CASPI was performed as described in Materials and Methods and the legend to Fig. 1. ——, sham CASPI (n = 11); · · · · , 14G CASPI, stent removal after 3 h (n = 13); — — , 14G CASPI, stent removal after 5 h (n = 25); — · · · · , 14G CASPI, stent removal after 9 h (n = 13); — , 14G CASP (n = 20).

3 h after surgery 6 h after surgery 12 h after surgery

sham colon

CASP colon

sham mesenteric lymph node

CASP mesenteric lymph node

FIG. 5. Infiltration of tissues with inflammatory cells. Recruitment of inflammatory cells was examined by immunohistochemical staining of colon and mesenteric lymph node cryosections of sham- or 14G CASP-operated mice, which were sacrificed 3, 6, or 12 h after surgery. Ascending colon and mesenteric lymph nodes were removed at given points in time, sectioned, and stained with biotinylated CD11b (Mac-1a) monoclonal antibody followed by streptavidin-peroxidase. The stain was reacted with 3-aminoethylcarbazole (see Materials and Methods). CD11b-positive cells (granulocytes and monocytes/macrophages) are labeled in red.
underwent 14G CASP surgery compared to sham-operated or naive mice (Fig. 7A and data not shown). To examine the production of cytokines in a systematic approach, the kinetic of the cytokine response of different tissues and organs was investigated. For this purpose, ascending colon, mesenteric lymph nodes, spleens, and lungs were removed from 14G CASP-operated mice at given points in time by conducting a KQCL test (see Materials and Methods). LPS amounts in healthy mice (0 h) and sham-operated mice (data not shown) were below the detection limit of the LPS assay of 0.005 EU/ml. As early as 2 h after induction of sepsis, substantial amounts of LPS could be detected.

A graphic showing the kinetics of TNF serum amounts after CASP surgery. TNF-α and IFN-γ are considered harmful mediators of septic shock. In bolus shock models, TNFRp55-deficient (LPS–d-GalN) and IFN-γR-deficient (high-dose LPS) mice are highly resistant (14, 41, 47). The course of sublethal 18G CASP was therefore investigated in TNFRp55^{−/−} (C57BL/6 inbred background) and IFN-γR^{−/−} mice (129/SvJ × C57BL/6 mixed background). In contrast to results observed after bolus injection of bacterial toxins, the mortality rates of TNFRp55^{−/−} animals (9 of 12 [75%]) after CASP surgery were not significantly different from those of control mice (8 of 12 [67%]; P = 0.488) (Fig. 8). However, the IFN-γR conferred protective functions after bacterial invasion since IFN-γR-deficient mice rapidly succumbed after 18G CASP surgery (100% [15 of 15]), whereas 36% (4 of 11; P < 0.001) of the control littermates died (Fig. 9). The differences between survival rates of TNFRp55^{−/−} mice (C57BL/6 inbred) and IFN-γR^{−/−} mice (129/SvJ × C57BL/6 mixed background) are not statistically significant (P = 0.131). However, the small differences in mortality observed in these groups may be attributable to the phenomenon of hybrid resistance to infection. These findings clearly indicate that gene-deficient mice are valuable tools for dissection of cytokine functions in vivo, that sterile toxic shock models do not mimic pathophysiological responses in sepsis initiated by replicating pathogens, and, moreover, that IFN-γ is required for survival of abdominal sepsis.

DISCUSSION

The current view regarding the pathogenesis of sepsis is based on the concept that bacteria, bacterial toxins, and/or virulence factors trigger inflammatory host responses culminating in a systemic inflammatory response syndrome characterized by the overproduction of host mediators such as TNF-α, IL-1, and IL-6 (12, 21). These host mediators finally cause multiorgan damage resulting in death. However, this concept is now being challenged, most probably because it has been derived mainly from animal studies in which bolus injections of bacteria or toxins were used and where the occurrence of septic shock was prevented by early interference with TNF-α bioactivities (30, 34, 38, 46, 51, 55). However, these models do not necessarily mirror the various conditions leading to sepsis in human patients (mechanical trauma, burn injury, surgery, gastrointestinal tract infection, etc.) and thus neither distinguish between distinct entities of patients nor take into account the invasion of the host by live replicating bacteria (11). It is conceivable that these problems account for the indecisive outcome of clinical trials based on bolus shock models.

The aim of this study was to develop a model for postoperative abdominal sepsis and to carefully dissect the immune pathophysiology during the course of sepsis (60). In CASP, a physical connection from the ascending colon into the peritoneal cavity is established. The surgical techniques involved
readily allow the reproducible generation of a septic focus leading to the immediate onset of generalized peritonitis. Moreover, CASPI provides a novel model for the study of mechanisms that may affect the efficacy of common surgical treatment regimens, addressing the removal of the septic focus combined with supportive therapies. The data presented here provide clear evidence that CASP and CASPI are indeed well suited for the reliable and highly standardized investigation of sepsis. The prime objective of this model that resembles human conditions much more closely than bolus sepsis models is combined with supportive therapies.

FIG. 7. Detection of cytokine mRNA in organs after CASP surgery. (A) Internal competitive semiquantitative cytokine RT-PCR from spleens harvested 6 h after 14G CASP or sham surgery. mRNA was extracted from spleens of mice after sham or 14G CASP surgery, and cDNA was transcribed. cDNAs were serially diluted, and the content of cDNA was estimated by internal competitive semiquantitative RT-PCR with β-actin-specific primers in the presence of known amounts of β-actin control fragment. TNF-α, IL-12p40, IFN-γ, and IL-10 cDNA amounts were determined by PCR amplification of serial dilutions from equilibrated cDNA amounts in the presence of the relevant PCR primers (Table 1) and the corresponding control fragment. The upper band represents the amplified control fragment of a known constant concentration, whereas the lower band shows the signal obtained after amplification of each titrated cytokine cDNA. The arrows indicate the concentrations of equal amounts of control fragment and cytokine cDNA. Upregulation of mRNAs for TNF-α, IL-12p40, and, to a smaller extent, IFN-γ can be observed. (B) Kinetics of the induction of cytokine mRNA transcription in colon, mesenteric lymph nodes, spleen, and lungs after CASP and sham surgery. Upregulation of TNF-α, IL-12p40, IFN-γ, and IL-10 was analyzed 3, 6, and 12 h after 14G CASP or sham surgery in various organs of mice; ascending colon, mesenteric lymph nodes, spleen, and lungs were removed, RNA was extracted, and cDNA was prepared. Semiquantitative PCR was performed as described for panel A. Induction of cytokine mRNA was calculated as fold induction over basal levels as determined after sham surgery. For explanation of calculations, see text.
to elucidate the pathophysiology of sepsis encountered in a defined group of patients and evaluate supportive surgical and nonsurgical therapy methods.

The clinical course of abdominal sepsis is characterized by a continuous or intermittent release of bacteria or bacterial toxins from a septic focus that induces a variety of inflammatory host mediators (12, 21). In CLP, a surgical peritonitis model described by Wichtermann et al. (59), different numbers of holes with various diameters are punctured into the ligated cecum. In our hands, ligation of the entire cecum led to 100% lethality independent of the size of the puncture holes (data not shown), probably due to necrosis of the entire cecum with fulminant release of bacteria. To obtain a sublethal experimental group, ligation of a small portion of the cecum was tried (data not shown). However, because it is obviously impossible to ligate exactly the same volume of the cecum, we reasoned that the insertion of a stent with a defined diameter would provide a more standardized way to produce sublethal experimental groups. In CASP, we observed exponentially increasing bacterial numbers in the peritoneal cavity after surgery, whereas in CLP there was a short initial peak, followed by a period of low bacterial counts culminating in a fulminant increase of bacteria in the peritoneal cavity (data not shown). As in CASPI, excision of the ligated cecum can be performed at different time points after primary surgery to eliminate the septic focus (5). However, since there is no standardized leakage of bacteria in CLP, the CASP and CASPI model is clearly favored for the investigation of experimental sepsis in the mouse.

Regulation of cytokines during sepsis and their tissue-specific expression patterns are widely unknown. Furthermore, it is not clear whether in a septic host hyperinflammatory and immunosuppressive conditions can coexist in distinct organs or tissues. It appears that determination of the relative contribution of local versus systemic cytokine production could be important for understanding the pathophysiology of sepsis, especially since numerous clinical studies have attempted to systemically neutralize LPS, TNF-α, or IL-1 and could not provide evidence for a beneficial effect of these treatment strategies (25, 29, 48, 61).

With use of CASP surgery, these questions can readily be addressed. As shown in this study, an increase of bacteria numbers in the host is rapidly encountered. As soon as 3 h after CASP surgery, LPS is detectable in the blood. Also, cultures from peripheral blood showed growth of enterobacteriaceae and enterococci as soon as 3 h after CASP surgery (59b). In the peritoneal cavity, in the peripheral blood, and in organs such as liver, lungs, and spleen, rapid invasion of bacteria occurs. As in the clinical situation, the host reacts by a systemic inflammatory response syndrome that is experimentally verified by the highly elevated amount of TNFα found in the systemic circulation. Interestingly, comparable levels of LPS and TNF-α were observed in patients suffering from severe secondary peritonitis (31). Additionally, IFN-γ could not be detected in septic CASP-operated mice in the circulation, consistent with findings in septic patients, who did not show a significant increase of systemic IFN-γ compared to baseline levels (59a).

Interestingly, the upregulation of cytokines such as IL-10, IL-12, IFN-γ, or TNF-α is highly site specific within the host after CASP surgery. While the local response in the colon is characterized by an induction of TNF-α, and interestingly of IL-10, the recruitment of inflammatory cells into the colonic wall is not accompanied by IL-12p40 or IFN-γ production. In the mesenteric lymph nodes, only a relatively weak induction of TNF-α and no upregulation of IL-12 and IFN-γ could be found. These data may indicate that the local reaction of the peritoneal environment is biased to evoke protective TNF-α actions such as procoagulant activity (8). Local TNF-α activity might be beneficial, since TNF-α appears to be required for closure of the septic focus by local abscess formation and for clearance of bacteria. This assumption is based on results from experiments of the CLP type (19) and on our own studies using the CLP model (59c). Here, neutralization of TNF-α leads to increased mortality, whereas treatment with TNF-α increases survival (17, 19). In marked contrast, if local abscess formation, to encapsulate the septic focus, is not effective, which is the case in 14G CASP (59c), the early and constant bacterial invasion of the body leads to a generalized reaction. Subsequently, a rapid induction of TNF-α, IL-12, and IL-10 is detected in the spleen. Interestingly, in the spleen, IFN-γ was only weakly upregulated, possibly because the simultaneous expression of IL-10 and IL-12 is counteractive with respect to IFN-γ production. In contrast, the most dramatic upregulation

![Graph of mortality of TNFRp55−/− mice after CASP surgery](image1)

FIG. 8. Mortality of TNFRp55−/− mice after CASP surgery. TNFRp55+/+ (——) and TNFRp55−/− (· · · ·) (41) animals (C57BL/6 background) were subjected to 18G CASP surgery. Survival was monitored. Four of 12 mice in the control group and 3 of 12 TNFRp55−/− mice survived 18G CASP.

![Graph of mortality of IFNγR−/− mice after CASP surgery](image2)

FIG. 9. Mortality of IFNγR−/− mice after CASP surgery. IFNγR−/− (32) (· · · ·) and IFNγR+/+ (——) control littermates (C57BL/6 × 129Sv background) were analyzed after 18G CASP surgery. Seven of 11 IFNγR−/− mice survived, whereas all of the 15 mice with an inactivated receptor for IFN-γ died.
of IL-12. IFN-γ, and TNF-α was observed in the lungs, where the induction of IL-10 was almost absent. Thus, a differential pattern of local cytokine induction can clearly be established. These findings indicate that organ damage of the lungs resulting in a respiratory distress syndrome, as is frequently encountered in sepsis patients, might result from the concerted and synergistic actions of IFN-α and IFN-γ and lack of the counterregulatory cytokine IL-10. Furthermore, compartmentalized neutralization of one or both of these cytokines might reduce organ damage and could be beneficial for the outcome of sepsis.

To further substantiate this notion, the roles of TNF-α and IFN-γ in CASP were verified on a molecular level. To this end, TNFRp55- and IFN-γR-deficient mice (32, 41) were subjected to IL-10 CASP surgery. In accordance with previous clinical studies (1, 27) and murine experiments (4, 22, 37) where TNF-α was systemically neutralized, the mortality rate of TNFRp55−/− mice did not differ substantially from that of control mice. This might be interpreted to mean that TNF-α plays no decisive role in abdominal sepsis, or, more likely, that by neutralization of TNF-α, both harmful and protective effects of this cytokine are lost, which results in an equivocal outcome.

Based on the expression pattern of IFN-γ described in this study, it might have been assumed that in the absence of IFN-γ signaling, an improved survival after CASP surgery would ensue, especially since the exuberant inflammatory reaction in the lung might be attenuated or absent. This is clearly not the case, since IFN-γR−/− mice readily succumb to 18G CASP, indicating that IFN-γ is of critical importance for coping with the invading bacteria. The experimental data obtained for IFNγR−/− mice support the results from a recent animal study where survival of peritonitis after burn injury was improved by IL-12 therapy (40) and are in agreement with a recent clinical study where IFN-γ-treated septic patients showed an improved clinical course (33). However, it also should be noted that in CLP experiments using mice, adverse reactions of IFN-γ play no decisive role in abdominal sepsis, or, more likely, that the primary clearance site for bacteria after systemic CLP experiments using mice, adverse reactions of IFN-γ-R-deficient mice (32, 41) were subjected to IL-10 CASP surgery. In accordance with previous clinical studies (1, 27) and murine experiments (4, 22, 37) where TNF-α was systemically neutralized, the mortality rate of TNFRp55−/− mice did not differ substantially from that of control mice. This might be interpreted to mean that TNF-α plays no decisive role in abdominal sepsis, or, more likely, that by neutralization of TNF-α, both harmful and protective effects of this cytokine are lost, which results in an equivocal outcome.

In summary, CASP and CASPI may provide a very useful tool for the investigation of sepsis. Based on the expression pattern of IFN-γ described in this study, it might have been assumed that in the absence of IFN-γ signaling, an improved survival after CASP surgery would ensue, especially since the exuberant inflammatory reaction in the lung might be attenuated or absent. This is clearly not the case, since IFN-γR−/− mice readily succumb to 18G CASP, indicating that IFN-γ is of critical importance for coping with the invading bacteria. The experimental data obtained for IFNγR−/− mice support the results from a recent animal study where survival of peritonitis after burn injury was improved by IL-12 therapy (40) and are in agreement with a recent clinical study where IFN-γ-treated septic patients showed an improved clinical course (33). However, it also should be noted that in CLP experiments using mice, adverse reactions of IFN-γ play no decisive role in abdominal sepsis, or, more likely, that the primary clearance site for bacteria after systemic CLP experiments using mice, adverse reactions of IFN-γ-R-deficient mice (32, 41) were subjected to IL-10 CASP surgery. In accordance with previous clinical studies (1, 27) and murine experiments (4, 22, 37) where TNF-α was systemically neutralized, the mortality rate of TNFRp55−/− mice did not differ substantially from that of control mice. This might be interpreted to mean that TNF-α plays no decisive role in abdominal sepsis, or, more likely, that by neutralization of TNF-α, both harmful and protective effects of this cytokine are lost, which results in an equivocal outcome.
CASP IN IFNγ-R-DEFICIENT MICE

Zantl, N., B. Holzmann, and K. Pfeffer. Unpublished data.

