Cytotoxicity of Hemolytic, Cytotoxic Necrotizing Factor 1-Positive and -Negative Escherichia coli to Human T24 Bladder Cells

MICHAEL D. ISLAND, XIAOLING CUI, BETSY FOXMAN, CARL F. MARRS, WALTER E. STAMM, ANN E. STAPLETON, AND JOHN W. WARREN

Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Division of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan; and Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington

Received 8 December 1997/Returned for modification 19 January 1998/Accepted 1 April 1998

Approximately one-half of Escherichia coli isolates from patients with cystitis or pyelonephritis produce the pore-forming cytotoxin hemolysin, a molecule with the capacity to lyse erythrocytes and a range of nucleated cell types. A second toxin, cytotoxic necrotizing factor 1 (CNF1), is found in approximately 70% of hemolytic, but rarely in nonhemolytic, isolates. To evaluate the potential interplay of these two toxins, we used epidemiological and molecular biologic techniques to compare the cytotoxicity of hemolytic, CNF1⁺, and CNF1⁻ cystitis strains toward human T24 bladder epithelial cells in vitro. A total of 29 isolates from two collections of cystitis-associated E. coli were evaluated by using methylene blue staining of bladder monolayers at 1-h intervals after inoculation with each strain. Most (20 of 29) isolates damaged or destroyed the T24 monolayer (less than 50% remaining) within 4 h after inoculation. As a group, CNF1⁺ isolates from one collection (11 strains) were less cytotoxic at 4 h than the CNF1⁻ strains in that collection (P = 0.009), but this pattern was not observed among isolates from the second collection (18 strains). To directly evaluate the role of CNF1 in cytotoxicity of hemolytic E. coli without the variables present in multiple clinical isolates, we constructed mutants defective in production of CNF1. Compared to the CNF1⁺ parental isolates, no change in cytotoxicity was detected in these cnf1 mutants. Our results indicate that CNF1 does not have a detectable effect on the ability of hemolytic E. coli to damage human bladder cell monolayers in vitro.

The urinary tract is defended against bacterial infection in part by the flow of urine and the antibacterial effects of the bladder mucosa (12, 29). These mechanisms are quite effective in removing colonic organisms that enter via an ascending route from the periurethral area through the urethra into the bladder lumen. Experimentally, the majority of Escherichia coli bacteria introduced into the bladder of human volunteers disappear within 72 h (12). Nonetheless, urinary tract infections (UTI) constitute one of the most common bacterial infections in the United States, resulting in 6 million to 7 million physician office visits per year (36). The majority of these manifest as dysuria, frequency, and urgency and are considered to be cystitis or bladder infections. The most common culprit, uropathogenic E. coli, is found in 80% of cases (35). However, most studies have focused on E. coli strains isolated from patients with fever and flank pain, i.e., pyelonephritis, considered to be kidney infection, and less is known about the pathogenesis of cystitis.

Certain factors are more often found in E. coli that cause UTI than in isolates from the feces of control patients and may contribute to the virulence of the UTI strains. These include adhesive fimbriae, the iron-scavenging siderophore aerobactin, certain capsular polysaccharides, serum resistance, and two toxins, hemolysin and cytotoxic necrotizing factor 1 (CNF1) (reviewed in references 2 and 9). The first of these toxins, hemolysin, is a pore-forming cytotoxin (reviewed in references 2 and 9) with the capacity to lyse erythrocytes and a range of nucleated cell types including granulocytes (10), fibroblasts (11), and human kidney epithelial cells (28, 38). The second toxin, CNF1, is associated with isolates from extraintestinal infections (primarily from UTI) (1, 5, 8, 25) and has marked effects on eukaryotic cell function, causing alterations in the cell cytoskeleton and morphology (7, 14, 21) and triggering internalization of latex beads and noninvasive bacteria (20). CNF1 is a lethal toxin when administered intravenously to mice (16) or sheep (13) and is demembranocytic in rabbit skin (14).

Several studies have noted a close association between these two toxins. CNF1 is found in approximately 70% of hemolytic strains but rarely in nonhemolytic isolates (1, 3–5, 7, 8, 25). Evidence suggests these toxins are genetically linked; both cnf1 and hly have been identified on a chromosomal gene block in seven E. coli isolates (18), and one uropathogenic strain (J96) has been shown to carry both cnf1 and hly on chromosomal pathogenicity island II (6).

The epidemiology, genetic linkage to other virulence factors, and in vitro and in vivo effects of CNF1 suggest that it is a potentially important virulence factor, but the interplay of CNF1 and its frequent associate hemolysin has not been investigated. If CNF1 is a virulence factor, it may directly or indirectly facilitate the effects of hemolysin. Alternatively, the association of CNF1 and hemolysin may result solely from their common carriage on a block of virulence genes. In this study we examined the hypothesis that production of CNF1 influences cytotoxicity of hemolytic E. coli isolated from cystitis cases toward bladder epithelial cells. Using both epidemiological and molecular biologic techniques, we compared...
CFN1+ and CFN1- clinical isolates and isogenic CFN1+ and CFN1- derivatives of two strains. Our results indicate that CFN1 does not affect the cytotoxicity of hemolytic isolates toward human bladder cells in vitro.

MATERIALS AND METHODS

Cell lines and bacterial strains. The T24 (HTB-4) human bladder transitional-cell carcinoma cell line (American Type Culture Collection, Rockville, Md.) was cultured at 37°C and 5% CO2 in McCoy's 5A medium with glutamine containing 10% fetal bovine serum and antibiotic-antimycotic solution (final concentrations, 100 μg of penicillin, 100 μg of streptomycin, and 0.25 μg of amphotericin B per ml. Gibco, N. L. Gaithersburg, Md.). E. coli isolates from patients with first-time cystitis were obtained from collections supplied were not included in the study since a limited status of each isolate was confirmed by DNA plus 0.015 M sodium citrate (pH 7.2), three washes with 6 M urea–0.4% SDS–nucleic acid labeling and detection kit as instructed by the manufacturer. Hemolytic phenotype was screened on LB plates containing 5% washed sheep erythrocytes with 20 mM CaCl2; hemolytic zones varied in size among isolates. Cytotoxicity assays. The effect of growth of each bacterial isolate on T24 cell monolayers was determined by quantitating cell mass of the surviving monolayer.

Cytotoxicity of E. coli cystitis isolates

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relevant characteristics</th>
<th>% of T24 monolayer remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>UW isolates (37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFN1+</td>
<td>hly+ papEFG+ (MRHA/H/S Gal-Gal+)</td>
<td>90 ± 8</td>
</tr>
<tr>
<td>F11</td>
<td>hly+ papEFG+ (MRHA/H/S Gal-Gal+)</td>
<td>37 ± 28</td>
</tr>
<tr>
<td>F12</td>
<td>hly+ papEFG+ (MRHA/H/S Gal-Gal+)</td>
<td>93 ± 9</td>
</tr>
<tr>
<td>F24</td>
<td>hly+ papEFG+ (MRHA/H/S Gal-Gal+)</td>
<td>92 ± 11</td>
</tr>
<tr>
<td>F38</td>
<td>hly+ papEFG+ (MRHA/H/S Gal-Gal+)</td>
<td>120 ± 11</td>
</tr>
<tr>
<td>F63</td>
<td>hly+ papEFG+ (MRHA/H/S Gal-Gal+)</td>
<td>94 ± 1</td>
</tr>
<tr>
<td>UM isolates (22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFN1-</td>
<td>hly+ papEFG+ (MRHA/H/S Gal-Gal+)</td>
<td>23 ± 15</td>
</tr>
<tr>
<td>BF284</td>
<td>hly+ papEFG+ (MRHA/H/S Gal-Gal+)</td>
<td>8 ± 1</td>
</tr>
<tr>
<td>BF270</td>
<td>hly+ papEFG+ (MRHA/H/S Gal-Gal+)</td>
<td>22 ± 15</td>
</tr>
<tr>
<td>BF248</td>
<td>hly+ papEFG+ (MRHA/H/S Gal-Gal+)</td>
<td>12 ± 2</td>
</tr>
<tr>
<td>BF235</td>
<td>hly+ papEFG+ (MRHA/H/S Gal-Gal+)</td>
<td>21 ± 4</td>
</tr>
<tr>
<td>BF233</td>
<td>hly+ papEFG+ (MRHA/H/S Gal-Gal+)</td>
<td>18 ± 11</td>
</tr>
<tr>
<td>BF292</td>
<td>hly+ papEFG+ (MRHA/H/S Gal-Gal+)</td>
<td>2 ± 1</td>
</tr>
<tr>
<td>BF280</td>
<td>hly+ papEFG+ (MRHA/H/S Gal-Gal+)</td>
<td>95 ± 4</td>
</tr>
<tr>
<td>BF1048</td>
<td>hly+ papEFG+ (MRHA/H/S Gal-Gal+)</td>
<td>64 ± 20</td>
</tr>
</tbody>
</table>

Phenotypes and genotypes (see Materials and Methods) were determined in clinical isolates and isogenic CFN1-derivatives of two strains. Our results indicate that CFN1 does not affect the cytotoxicity of hemolytic isolates toward human bladder cells in vitro.
Effects of CNF1⁺ and CNF1[−] cystitis isolates on bladder cells. Hemolysin-positive <i>E. coli</i> isolates from patients with first-time cystitis were obtained from collections at two geographic sites (29 strains) and compared in methylene blue cytotoxicity assays. Approximately one-half (i.e., 15) of the strains were CNF1⁺, based on DNA probe analysis and bioassay for multienucleation of HeLa cells in vitro (see Materials and Methods). As with isolate CFT073, damage to T24 monolayers after incubation with the majority of the hemolytic cystitis isolates was rapid (Table 1). However, the cytotoxicity varied among strains, and some isolates had only minimally damaged the monolayer by the 4-h point.

Among the UW isolates, five of five CNF1[−] strains damaged the bladder monolayer within 4 h (less than 50% of the monolayer remaining), whereas only one of six CNF1⁺ strains in this same collection was as cytotoxic (<i>P</i> = 0.009, Mann-Whitney test). However, in a trial where the assay was prolonged, three of the five less cytotoxic CNF1⁺ strains destroyed the monolayer by the 5-point (data not shown); thus, the difference in those isolates constituted a lag of approximately 1 h in cytotoxic effects. No difference in cytotoxicity between CNF1⁺ and CNF1[−] isolates was observed among the 18 UM strains; in each of the CNF1⁺ and CNF1[−] groups from that collection, seven of the nine isolates destroyed the monolayer at 4 h (<i>P</i> = 0.78). Nor was a difference in cytotoxicity observed when CNF1⁺ and CNF1[−] strains from both collections combined were compared (<i>P</i> = 0.43). However, the CNF1[−] isolates from the UW collection were also less cytotoxic as a group than the CNF1⁺ isolates from the UM collection (<i>P</i> = 0.012).

Effects of isogenic CNF1⁺ and CNF1[−] isolates on bladder cells. Since confounding differences occur among clinical isolates, we directly evaluated the influence of CNF1 on cytotoxicity by constructing isogenic strains differing in ability to produce CNF1. Two isolates (F3 and F11) were chosen for further study because they had different levels of cytotoxicity and were also virulent in a CBA mouse model of UTI (26). The chromosomal cnf1 gene in F3 and F11 was inactivated by integration of a plasmid containing an internal fragment of the cnf1 gene (pSE297). The resulting mutants, F3.297 and F11.297, contain two truncated versions of the cnf1 gene separated by the plasmid sequences (Fig. 2). Disruption of the cnf1 locus was confirmed by amplifying the junctions between the cnf1 locus and the inserted plasmid sequence. Primers W1 (5'-TTGGTATCAAATTTC-3') and W4, which anneal within the plasmid vector, and primers F3.297 or F11.297 template with combinations of primers W91 and W2 produced a 1.7-kb fragment (predicted 1,775 bp) from F3.297 or F11.297 template (data not shown).

RESULTS

Effect of hemolytic <i>E. coli</i> on bladder cells. We used an in vitro assay of cell mass to determine the cytotoxicity of hemolytic <i>E. coli</i> toward bladder cell monolayers. In this protocol, T24 monolayers were inoculated with various <i>E. coli</i> strains and the fraction of the bladder monolayer remaining at 1-h intervals after inoculation was quantitated by staining with the basic dye methylene blue. Three strains from previous studies (28, 38) were used to evaluate the assay: CFT073, a hemolytic pylonephritic isolate; CFT073hlyD::TphoA⁺, a hemolysin-deficient derivative of CFT073; and FN414, a nonhemolytic fecal isolate from a normal individual (24). When inoculated with hemolytic CFT073, T24 cell monolayers were rapidly destroyed and methylene blue staining decreased precipitously at 3 to 4 h postincubation (Fig. 1). However, no killing was observed with strain CFT073hlyD::TphoA⁺, in which hemolytic activity has been lost, or with the nonhemolytic fecal isolate FN414, suggesting that hemolysin was associated with these cytotoxic effects. Neither CFT073 nor FN414 carries cnf1 sequences, based on dot blot analysis (data not shown). Inoculation of parallel sets of wells containing McCoy's medium showed that growth rates of the three strains were similar (data not shown).

Effects of CNF1⁺ and CNF1[−] cystitis isolates on bladder cells. Hemolysin-positive <i>E. coli</i> isolates from patients with first-time cystitis were obtained from collections at two geographic sites (29 strains) and compared in methylene blue cytotoxicity assays. Approximately one-half (i.e., 15) of the strains were CNF1⁺, based on DNA probe analysis and bioassay for multienucleation of HeLa cells in vitro (see Materials and Methods). As with isolate CFT073, damage to T24 monolayers after incubation with the majority of the hemolytic cystitis isolates was rapid (Table 1). However, the cytotoxicity varied among strains, and some isolates had only minimally damaged the monolayer by the 4-h point.

Among the UW isolates, five of five CNF1[−] strains damaged the bladder monolayer within 4 h (less than 50% of the monolayer remaining), whereas only one of six CNF1⁺ strains in this same collection was as cytotoxic (<i>P</i> = 0.009, Mann-Whitney test). However, in a trial where the assay was prolonged, three of the five less cytotoxic CNF1⁺ strains destroyed the monolayer by the 5-point (data not shown); thus, the difference in those isolates constituted a lag of approximately 1 h in cytotoxic effects. No difference in cytotoxicity between CNF1⁺ and CNF1[−] isolates was observed among the 18 UM strains; in each of the CNF1⁺ and CNF1[−] groups from that collection, seven of the nine isolates destroyed the monolayer at 4 h (<i>P</i> = 0.78). Nor was a difference in cytotoxicity observed when CNF1⁺ and CNF1[−] strains from both collections combined were compared (<i>P</i> = 0.43). However, the CNF1[−] isolates from the UW collection were also less cytotoxic as a group than the CNF1⁺ isolates from the UM collection (<i>P</i> = 0.012).

Effects of isogenic CNF1⁺ and CNF1[−] isolates on bladder cells. Since confounding differences occur among clinical isolates, we directly evaluated the influence of CNF1 on cytotoxicity by constructing isogenic strains differing in ability to produce CNF1. Two isolates (F3 and F11) were chosen for further study because they had different levels of cytotoxicity and were also virulent in a CBA mouse model of UTI (26). The chromosomal cnf1 gene in F3 and F11 was inactivated by integration of a plasmid containing an internal fragment of the cnf1 gene (pSE297). The resulting mutants, F3.297 and F11.297, contain two truncated versions of the cnf1 gene separated by the plasmid sequences (Fig. 2). Disruption of the cnf1 locus was confirmed by amplifying the junctions between the cnf1 locus and the inserted plasmid sequence (see Materials and Methods). Amplification of cnf1 sequences with primers W1 and W2 produced a 1.7-kb fragment (predicted 1,775 bp) from parental F3 or F11 chromosomal DNA but did not produce a product from F3.297 or F11.297 template (data not shown). The PCR product using these primers and template from F3.297 or F11.297 would contain the integrated vector and have a predicted size of 9.9 kb. However, amplification of F3.297 or F11.297 template with combinations of primers W91 and W4, which anneal within the plasmid vector, and primers W1 and W2, which anneal within cnf1, produced fragments of approximately 1.7 kb (predicted, 1,662 bp) and 1.8 kb (predicted, 1,756 bp), corresponding to the regions of cnf1 flanking the integrated vector (data not shown). These products were not amplified from template of the parental isolate F3 or F11.

To determine whether CNF1 activity was absent from mutated strains, extracts from each strain were evaluated for the ability to induce multienucleation of HeLa and T24 bladder cells in vitro. Cell lysates or sonicates were prepared from overnight cultures of strains F3, F3.297, F11, and F11.297 and added to HeLa or T24 bladder cells in 96-well microtiter plates. After 72 h, F3 lysates containing 3.7 to 7.5 μg of pro-
tein/ml (F11 sonicates, 3 to 6 μg/ml [data not shown]) induced formation of 50% multinucleate cells in HeLa cells, whereas extracts from mutants F3.297 or F11.297 (data not shown) did not contain detectable CNF1 activity at protein concentrations of 100 μg/ml (Fig. 3). Results obtained with T24 bladder cells were similar, but the fraction of multinucleate cells was lower with this cell line (Fig. 3).

Comparing the CNF1-defective mutants and their parental counterparts, we found no effect of CNF1 status on cytotoxicity toward T24 cells. Neither F3.297 nor F11.297 differed from the parental CNF1 isolates in ability to damage T24 bladder cell monolayers, based on methylene blue staining (Fig. 4). The growth rate of F3.297 and F11.297 was equivalent to that of the parent in Trypticase soy broth and in wells containing McCoy’s medium inoculated in parallel with cytotoxicity assays (data not shown).

DISCUSSION

Approximately one-half of E. coli isolated from patients with cystitis (40%) or pyelonephritis (49%) produce the pore-forming cytotoxin hemolysin (27). Of hemolytic isolates from extraintestinal infections (primarily UTI strains), a large fraction (65 to 83%) encode the toxin CNF1, but CNF1 is rarely found in nonhemolytic isolates (1, 5, 8, 25). The tight genetic linkage of CNF1 and its putative regulatory gene is consistent with a single cotranscribed unit that is present in at least 50% of hemolytic E. coli clinical isolates (27).

FIG. 2. Construction of cnf1 mutants. Plasmid pSE297 containing a 1.4-kb internal fragment of cnf1 on a suicide vector was introduced into E. coli F3 and F11 by electroporation and selection for the tetracycline resistance of the vector. The resulting, mutated cnf1 locus contains two truncated cnf1 genes flanking the integrated vector. Integration of pSE297 sequences at the chromosomal cnf1 locus was confirmed by amplifying fragments from the junctions between the integrated vector and cnf1 sequences (see Materials and Methods).

FIG. 3. CNF1 activities in extracts from E. coli F3 and F3.297 (cnf1::pSE297). Twofold serial dilutions of cell extracts (Materials and Methods) from isolates F3 or F3.297 (cnf1::pSE297) were added to HeLa or T24 cells in 96-well microtiter plates. Plates were incubated for 72 h, fixed, and stained with Giemsa stain. Data are fraction of cells which were multinucleate, determined by using an ocular grid, and are from a representative experiment.

FIG. 4. Effects of isogenic CNF1+ and CNF1−, hemolytic E. coli on survival of T24 bladder cell monolayers. T24 bladder cell monolayers were inoculated with E. coli F3, F3.297 (cnf1::pSE297), F11, or F11.297 (cnf1::pSE297). The fraction of the T24 monolayer remaining was determined at 1-h intervals by staining with the dye methylene blue. Data for each strain are means ± standard errors from two or three experiments.
of CNF1 to hemolysin, and the rarity of nonhemolytic CNF1-producing isolates suggested that CNF1 and hemolysin may have an interactive role in pathogenesis of UTI.

If CNF1 and hemolysin acted in concert to damage bladder epithelial cells, we reasoned this might be reflected in vitro by altered cytolyis of monolayers inoculated with hemolytic, CNF1-producing strains of E. coli. CNF1 causes alteration of cytoskeletal organization in animal and can trigger the entry of latex beads or noninvasive bacteria in vitro. Cytoskeletal alterations can begin rapidly and at low concentrations of CNF1; purified CNF1 increased formation of actin stress fibers and membrane ruffles in HEp-2 cells in 2 h at 10^{-7} M (20). Hemolysin is a pore-forming cytotoxic toxin (2, 9) that rapidly kills a spectrum of cell types (10, 11, 23), including renal tubular (28, 38) and T24 bladder epithelial (this study) cells. We envisioned that CNF1 might influence the action of hemolysin possibly by triggering the internalization or association of hemolytic E. coli with bladder cells, thereby increasing the effectiveness of hemolysin. It has been noted previously that di-galactose-binding pilus increase the in vitro lytic activity of hemolytic strains toward erythrocytes, suggesting that binding to target cells increases the effectiveness of toxin delivery (30).

One approach to the question was to evaluate the cytotoxicity of a range of hemolysin-producing cystitis isolates categorized by their CNF1 status. Interestingly, we found that CNF1+ isolates from one site (UW) exhibited a lag in destruction of T24 monolayers compared to CNF1− isolates from that collection. In contrast, among CNF1− and CNF1+ strains from the second collection (UM), no difference was observed. This discrepancy could be from sampling or could be actual differences in the populations of E. coli strains causing cystitis in the Seattle, Wash., and Ann Arbor, Mich., areas, e.g., different clones or pathogenicity islands.

Thus, to simplify the question of whether hemolysin and CNF1 interact, we used a genetic approach, constructing isogenic mutants defective in production of CNF1. Two UW CNF1+ isolates, F3 and F11, were selected for mutagenesis, the former with relatively low and the latter with relatively high cytotoxicity. Comparison of the CNF1+ and CNF1− versions of these isolates indicated that CNF1 status does not alter cytotoxicity in our in vitro assay.

These observations indicate that CNF1 does not greatly alter the capacity of hemolytic cystitis isolates to kill T24 bladder cells. However, these data reflect the end result of a potentially complex process involving expression of hemolysin and CNF1 and their effects on a specific cell type under in vitro conditions. The potential for subtle interactions in the expression and activity of these proteins and in cellular responses to them under different conditions or in a different cell type remains. For instance, the rapidity with which hemolytic isolates kill T24 bladder cells in vitro may obscure the impact of CNF1, but these findings may not reflect in vivo processes. Additionally, CNF1 may act in the pathogenesis of cystitis in some other way. De Rycke et al. (15) observed cytopathic effects on HeLa cells, progressing to lethality 5 days after a brief initial exposure to CNF1+ bacteria (hemolysin was inhibited by seroneutralization). Hence, while hemolysin may be the dominant determinant of bladder cell fate in the short term, there remains the possibility that in vivo CNF1 influences surviving cells (i.e., those adjacent or marginally affected by hemolysin) or acts in conjunction with other factors such as cytotoxic distending toxin (34).

ACKNOWLEDGMENTS

This work was supported by Public Health Service research grant PO1 DK49720-01 from the National Institutes of Health.

We thank S. Elliott and V. Falbo for providing pSE297 and pSS392, respectively, R. Hebel for advice on statistical analysis, and H. L. T. Mobley for providing laboratory support for initiation of this study.

REFERENCES