Neutralization of Endotoxin In Vitro and In Vivo by a Human Lactoferrin-Derived Peptide

GUI-HANG ZHANG,¹* DAVID M. MANN,²,³ AND CHAO-MING TSAI¹

Division of Bacterial Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland 20852; J. H. Holland Laboratory, Plasma Derivatives Department, American Red Cross, Rockville, Maryland 20855; and Department of Biochemistry and Molecular Biology and the Institute for Biochemical Sciences, George Washington University Medical Center, Washington, D.C. 20037

Received 31 July 1998/Returned for modification 28 September 1998/Accepted 11 December 1998

Endotoxin (lipopolysaccharide [LPS]) is the major pathogenic factor of gram-negative septic shock, and endotoxin-induced death is associated with the host overproduction of tumor necrosis factor alpha (TNF-α). In the search for new antiendotoxin molecules, we studied the endotoxin-neutralizing capacity of a human lactoferrin-derived 33-mer synthetic peptide (GRRRRSVQWCASVSPEATKCFCQWQRNMRKVGRP; designated LF-33) representing the minimal sequence for lactoferrin binding to glycosaminoglycans. LF-33 inhibited the coagulation of the Limulus amebocyte lysate and the secretion of TNF-α by RAW 264.7 cells induced by lipid A and four different endotoxins with a potency comparable to that of polymyxin B. The first six residues at the N terminus of LF-33 were critical for its endotoxin-neutralizing capacity. The endotoxin-neutralizing capability of LF-33 and polymyxin B was attenuated by human serum. Coinjection of Escherichia coli LPS (125 ng) with LF-33 (2.5 µg) dramatically reduced the lethality of LPS in the galactosamine-sensitized mouse model. Significant protection of the mice against the lethal LPS challenge was also observed when LF-33 (100 µg) was given intravenously after intraperitoneal injection of LPS. Protection was correlated with a reduction in TNF-α levels in the mouse serum. These results demonstrate the endotoxin-neutralizing capability of LF-33 in vitro and in vivo and its potential use for the treatment of endotoxin-induced septic shock.

Endotoxin (lipopolysaccharide [LPS]) is the major pathogenic factor of gram-negative septic shock, and endotoxin-induced death is associated with the host overproduction of tumor necrosis factor alpha (TNF-α). In the search for new antiendotoxin molecules, we studied the endotoxin-neutralizing capacity of a human lactoferrin-derived 33-mer synthetic peptide (GRRRRSVQWCASVSPEATKCFCQWQRNMRKVGRP; designated LF-33) representing the minimal sequence for lactoferrin binding to glycosaminoglycans. LF-33 inhibited the coagulation of the Limulus amebocyte lysate and the secretion of TNF-α by RAW 264.7 cells induced by lipid A and four different endotoxins with a potency comparable to that of polymyxin B. The first six residues at the N terminus of LF-33 were critical for its endotoxin-neutralizing capacity. The endotoxin-neutralizing capability of LF-33 and polymyxin B was attenuated by human serum. Coinjection of Escherichia coli LPS (125 ng) with LF-33 (2.5 µg) dramatically reduced the lethality of LPS in the galactosamine-sensitized mouse model. Significant protection of the mice against the lethal LPS challenge was also observed when LF-33 (100 µg) was given intravenously after intraperitoneal injection of LPS. Protection was correlated with a reduction in TNF-α levels in the mouse serum. These results demonstrate the endotoxin-neutralizing capability of LF-33 in vitro and in vivo and its potential use for the treatment of endotoxin-induced septic shock.

Endotoxin (lipopolysaccharide [LPS]) is the major pathogenic factor of gram-negative septic shock, and endotoxin-induced death is associated with the host overproduction of tumor necrosis factor alpha (TNF-α). In the search for new antiendotoxin molecules, we studied the endotoxin-neutralizing capacity of a human lactoferrin-derived 33-mer synthetic peptide (GRRRRSVQWCASVSPEATKCFCQWQRNMRKVGRP; designated LF-33) representing the minimal sequence for lactoferrin binding to glycosaminoglycans. LF-33 inhibited the coagulation of the Limulus amebocyte lysate and the secretion of TNF-α by RAW 264.7 cells induced by lipid A and four different endotoxins with a potency comparable to that of polymyxin B. The first six residues at the N terminus of LF-33 were critical for its endotoxin-neutralizing capacity. The endotoxin-neutralizing capability of LF-33 and polymyxin B was attenuated by human serum. Coinjection of Escherichia coli LPS (125 ng) with LF-33 (2.5 µg) dramatically reduced the lethality of LPS in the galactosamine-sensitized mouse model. Significant protection of the mice against the lethal LPS challenge was also observed when LF-33 (100 µg) was given intravenously after intraperitoneal injection of LPS. Protection was correlated with a reduction in TNF-α levels in the mouse serum. These results demonstrate the endotoxin-neutralizing capability of LF-33 in vitro and in vivo and its potential use for the treatment of endotoxin-induced septic shock.

Endotoxin (lipopolysaccharide [LPS]) is the major pathogenic factor of gram-negative septic shock, and endotoxin-induced death is associated with the host overproduction of tumor necrosis factor alpha (TNF-α). In the search for new antiendotoxin molecules, we studied the endotoxin-neutralizing capacity of a human lactoferrin-derived 33-mer synthetic peptide (GRRRRSVQWCASVSPEATKCFCQWQRNMRKVGRP; designated LF-33) representing the minimal sequence for lactoferrin binding to glycosaminoglycans. LF-33 inhibited the coagulation of the Limulus amebocyte lysate and the secretion of TNF-α by RAW 264.7 cells induced by lipid A and four different endotoxins with a potency comparable to that of polymyxin B. The first six residues at the N terminus of LF-33 were critical for its endotoxin-neutralizing capacity. The endotoxin-neutralizing capability of LF-33 and polymyxin B was attenuated by human serum. Coinjection of Escherichia coli LPS (125 ng) with LF-33 (2.5 µg) dramatically reduced the lethality of LPS in the galactosamine-sensitized mouse model. Significant protection of the mice against the lethal LPS challenge was also observed when LF-33 (100 µg) was given intravenously after intraperitoneal injection of LPS. Protection was correlated with a reduction in TNF-α levels in the mouse serum. These results demonstrate the endotoxin-neutralizing capability of LF-33 in vitro and in vivo and its potential use for the treatment of endotoxin-induced septic shock.

Endotoxin (lipopolysaccharide [LPS]) is the major pathogenic factor of gram-negative septic shock, and endotoxin-induced death is associated with the host overproduction of tumor necrosis factor alpha (TNF-α). In the search for new antiendotoxin molecules, we studied the endotoxin-neutralizing capacity of a human lactoferrin-derived 33-mer synthetic peptide (GRRRRSVQWCASVSPEATKCFCQWQRNMRKVGRP; designated LF-33) representing the minimal sequence for lactoferrin binding to glycosaminoglycans. LF-33 inhibited the coagulation of the Limulus amebocyte lysate and the secretion of TNF-α by RAW 264.7 cells induced by lipid A and four different endotoxins with a potency comparable to that of polymyxin B. The first six residues at the N terminus of LF-33 were critical for its endotoxin-neutralizing capacity. The endotoxin-neutralizing capability of LF-33 and polymyxin B was attenuated by human serum. Coinjection of Escherichia coli LPS (125 ng) with LF-33 (2.5 µg) dramatically reduced the lethality of LPS in the galactosamine-sensitized mouse model. Significant protection of the mice against the lethal LPS challenge was also observed when LF-33 (100 µg) was given intravenously after intraperitoneal injection of LPS. Protection was correlated with a reduction in TNF-α levels in the mouse serum. These results demonstrate the endotoxin-neutralizing capability of LF-33 in vitro and in vivo and its potential use for the treatment of endotoxin-induced septic shock.
tion in the presence of human serum. Finally, we evaluated the protection provided by LF-33 to galactosamine-sensitized mice against a lethal endotoxin challenge.

MATERIALS AND METHODS

Peptides. Lactoferrin-derived peptides were synthesized by conventional Fmoc [N-(9-fluorenylmethoxycarbonyl)] chemistry as described elsewhere (20). The 33-mer peptide (GRRRRSVQWCAVSQPEATKCFQWQRNMRKVRGP) corresponding to the first 33 residues of the N-terminal lactoferrin is designated LF-33 (molecular weight [MW], 4,004). The 27-mer peptide, LF-27 (MW, 3,276), corresponds to LF-33 lacking its N-terminal six residues. Polymyxin B (MW, 1,086, Sigma, St. Louis, Mo.), an antiendotoxin peptide (4), is used as a reference for comparison throughout this study.

LPS. Control standard endotoxins from Escherichia coli O113:H10 and Salmonella abortus equi (Associates of Cape Cod, Inc., Woods Hole, Mass.) had a potency of 10 endotoxin units (EU) per ng. LPS (purity >99%) from Neisseria meningitidis was prepared from the Group B strain 0275 in our laboratory, and its potency was 25 EU/ng. Lipid A from E. coli K-12 (List Biological Laboratories, Inc., Campbell, Calif.) had a potency of 8.6 EU/ng. The potency of the LPS from Pseudomonas aeruginosa (Sigma) was 0.12 EU/ng. The potency of the endotoxin described above was determined with the Limulus enzyme-linked immunosorbent assay (ELISA) (43) in comparison with the U.S. Pharmacopeia reference standard endotoxin EC-5.

Limulus ELISA for determining the 

Table 1. ENC0 of antiendotoxin agents determined by the Limulus ELISA

<table>
<thead>
<tr>
<th>Agent</th>
<th>Lipid A</th>
<th>E. coli LPS</th>
<th>S. abortus equi LPS</th>
<th>P. aeruginosa LPS</th>
<th>N. meningitidis LPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF-33</td>
<td>0.10 ± 0.07 μM</td>
<td>0.52 ± 0.078 μM</td>
<td>0.39 ± 0.054 μM</td>
<td>2.08 ± 0.37 μM</td>
<td>3.08 ± 0.44 μM</td>
</tr>
<tr>
<td>LF-27</td>
<td>0.63 ± 0.093 μM</td>
<td>7.45 ± 1.12 μM</td>
<td>&gt;300 μM</td>
<td>&gt;300 μM</td>
<td>&gt;300 μM</td>
</tr>
<tr>
<td>Polymyxin B</td>
<td>0.19 ± 0.021 μM</td>
<td>1.95 ± 0.26 μM</td>
<td>18.2 ± 2.85 μM</td>
<td>3.91 ± 0.73 μM</td>
<td>&gt;100 μM</td>
</tr>
<tr>
<td>Human serum</td>
<td>&gt;50%</td>
<td>0.03% ± 0.005%</td>
<td>2.1% ± 0.29%</td>
<td>0.63% ± 0.11%</td>
<td>2.52% ± 0.41%</td>
</tr>
</tbody>
</table>

*The ENC0 against 200 EU of endotoxin per ml was measured.

Inhibition of endotoxin-induced LAL coagulation. ENC0 values of each antiendotoxin agent against lipid A and four different types of LPS are listed in Table 1. A low ENC0 indicates high potency of endotoxin neutralization. The potency of TNF-α activity of some of the endotoxin and test materials was below 160 pg/ml. The human serum used in some experiments was a pool from normal donors.

The in vivo assay. TNF-α activity in the culture supernatant was determined on the basis of its cytotoxicity for the mouse fibrosarcoma cell line WEHI 164 (ATCC). We observed that this cell line was fourfold more sensitive to TNF-α than the commonly used L929 fibroblast cells, and the sensitivity was further increased fivefold by inclusion of actinomycin D (Life Technologies) in the medium (32). In this assay, the concentration of active TNF-α was correlated with cell death resulting from exposure to TNF-α. Cell death was measured colorimetrically with the vital dye MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) (MTT) (24) using the enzymatic cascade of the LAL assay itself after a 1,000-fold dilution of the sample. The sensitivity of the assay allowed for very low levels of the endotoxin activity to be detected. Following incubation of endotoxin with test materials, a 1,000-fold dilution was introduced into the well. LPS (purely >99%) from Neisseria meningitidis was prepared from the Group B strain 0275 in our laboratory, and its potency was 25 EU/ng. Lipid A from E. coli K-12 (List Biological Laboratories, Inc., Campbell, Calif.) had a potency of 8.6 EU/ng. The potency of the LPS from Pseudomonas aeruginosa (Sigma) was 0.12 EU/ng. The potency of the endotoxin described above was determined with the Limulus enzyme-linked immunosorbent assay (ELISA) (43) in comparison with the U.S. Pharmacopeia reference standard endotoxin EC-5.

The antibody at a 1:100 dilution completely eliminated the cytotoxicity in the culture supernatant of the RAW 264.7 cells stimulated by endotoxin and in the mouse sera collected 1 h after intraperitoneal injection of LPS. Briefly, 96-well tissue culture plates were seeded with 100 μl of WEHI 164 cells (5 x 10^6 cells/ml) in RPMI 1640 medium (Life Technologies) containing 10% heat-treated fetal bovine serum, 25 mM HEPES (pH 7.5), penicillin (60 U/ml), streptomycin (60 μg/ml), and actinomycin D (4 μg/ml). After a 2-h incubation at 37°C in a 6% CO2 incubator, 10 μl of twofold serially diluted samples (culture supernatants) or standards (murine recombinant TNF-α; Genzyme) was added to each well and the wells were incubated for 20 h. Cell viability was then determined by the addition of 10 μl of MTT (thiazolyl blue; Sigma) stock solution (5 mg/ml in saline) to each well, and the incubation was allowed to continue for 6 h. One hundred eighty microtiter of isopropanol (containing 40 mM HCl) was added to dissolve the generated dark blue crystals. The plate was read at 570 nm with a reference of 630 nm in a microplate reader. The amount of TNF-α that led to 50% killing of the seeded cells was defined as 1 U, equivalent to approximately 15 pg of recombinant TNF-α under the present condition. A standard curve was obtained by incubating known amounts of the recombinant TNF-α with the WEHI 164 cells.

To exclude any potential cytotoxicity of LF-33, the procedure described above was followed except that WEHI 164 cells were replaced by RAW 264.7 cells and the concentration of cells seeded in each well was 1.5 x 10^5 per 150 μl of medium to mimic the conditions in the stimulation experiment. At the highest concentration of LF-33 (10 μM) used in this study, no cytotoxicity to RAW 264.7 cells was detected.

Galactosamine-sensitized mouse model. Mice are typically resistant to endotoxin. However, the sensitivity of mice to endotoxin can be enhanced more than 1,000-fold by coinjection with a liver-specific inhibitor, galactosamine (11, 12). An essential feature of this in vivo model is that systemically released TNF-α causes liver damage due to TNF-α-mediated liver cell death, which can be scored by measuring lethality. In our study, i.p. injection of 125 ng of E. coli LPS together with 15 mg of galactosamine hydrochloride (Sigma) in 0.5 ml of 0.15 M NaCl induced nearly 100% lethality in 8- to 10-week-old female NIH/Swiss mice (body weight, 20 to 25 g/mouse). LF-33 was either injected intravenously (i.v.) through tail veins 10 min after the i.p. injection of the LPS-galactosamine mixture or coinjected i.p. with LPS and galactosamine. Lethality was observed for 72 h after injection. In experiments involving measurement of the TNF-α level in serum, blood samples were collected in serum separator tubes (Becton Dickinson, Rutherford, N.J.) 60 to 90 min postinjection, and sera were obtained after centrifugation. The TNF-α level in serum was measured by the cytotoxic assay described above. The peak TNF-α level in serum was found between 60 and 90 min after i.p. injection of LPS.

Statistics. We performed all endotoxin and TNF-α measurements in triplicate in each experiment. At least two independent experiments were performed for all data. Values are given as the mean ± standard deviation (SD) and were compared by using the unpaired Student’s t test. Lethality is compared by use of Fisher’s exact test.

RESULTS

Inhibition of endotoxin-induced LAL coagulation. ENC0 values of each antiendotoxin agent against lipid A and four different types of LPS are listed in Table 1. A low ENC0 indicates high potency of endotoxin neutralization. The potency of
each antiendotoxin agent varied depending on the type of endotoxin. LF-33 was more potent than polymyxin B, on a molar basis, at neutralizing all forms of endotoxin tested. In contrast, LF-27 was approximately 10-fold less potent than LF-33 at neutralizing lipid A and E. coli LPS and had no detectable activity against the other three LPSs. Human serum showed various degrees of inhibition of endotoxin-induced LAL coagulation but had no effect on lipid A (Table 1).

**Suppression of endotoxin-induced TNF-α secretion by LF-33.** RAW 264.7 cells secrete TNF-α upon exposure to endotoxin (32). A linear relationship between TNF-α secretion and endotoxin concentration was observed at endotoxin concentrations below 20 ng/ml for lipid A and the various LPSs used in this study, and a concentration of 10 ng/ml of endotoxin was selected for the TNF-α-inducing experiments. Mixing endotoxin with increasing concentrations of LF-33 resulted in a dose-dependent suppression of endotoxin-induced TNF-α secretion (Fig. 1). Similar to the results of the LAL assay, the potency of LF-33 varied depending on the type of endotoxin. The LF-33 concentrations needed to suppress TNF-α secretion induced by endotoxin (10 ng/ml) by 50% were approximately 0.01 μM for E. coli LPS and lipid A, 0.1 μM for LPS from P. aeruginosa, and 0.5 μM for LPS from S. abortus equi and N. meningitidis. The effects of LF-27, polymyxin B, and human serum on endotoxin-induced TNF-α secretion are shown in Table 2 for a comparison. LF-33 exhibited a slightly higher potency than polymyxin B in suppressing TNF-α secretion induced by different types of endotoxin, whereas an equimolar concentration of LF-27 or 10% human serum had no effect on endotoxin-induced TNF-α secretion.

**Effect of human serum on the LF-33 suppression of endotoxin-induced TNF-α secretion.** To test the suppression of endotoxin-induced TNF-α secretion under more physiological conditions, LF-33 or polymyxin B was added to human serum (final concentration, 10%) before the addition of endotoxin. As shown in Table 3, the suppressive effect of the peptides was attenuated substantially in the presence of 10% human serum, although the serum effect could be overcome by increasing the concentration of LF-33 (Table 3 and Fig. 2). However, if the peptide was mixed with endotoxin 5 min before the addition of serum, the effect of the serum on the neutralization of endotoxin by the peptides was greatly reduced (Table 4).

**Effect of LF-33 on endotoxin-induced lethality and the TNF-α level in serum in the galactosamine-sensitized mouse model.** Injection of 125 ng of E. coli LPS per animal by the i.p. route induced nearly 100% lethality in the galactosamine-sensitized mice. As shown in Table 5, the endotoxin-induced lethality was dramatically reduced by injecting LF-33. Small amounts of LF-33 (2.5 μg per animal), when injected simultaneously with endotoxin, reduced the lethality from 93% (14 of 15 animals dead) to 6% (1 of 15 animals dead). In addition, LF-33 also significantly reduced the lethality when injected i.v. 10 min subsequent to the i.p. injection of endotoxin (Table 5), although a 40-fold-greater amount of LF-33 was required. The protection was correlated with the reduction of the TNF-α level in mouse serum (Table 5).

**DISCUSSION**

Current treatments for gram-negative sepsis and septic shock rely on antibiotics to control the infection and intensive-care support to correct the dysfunction of cardiovascular, respiratory, and other organ systems. Research into the pathogenesis of this fatal clinical syndrome points to endotoxin as a principal pathogenic factor and TNF-α as a primary mediator of endotoxicity. Although a number of antiendotoxin proteins and peptides have been reported (10, 13, 18, 28, 33), there is still no antiantiendotoxin agent licensed for clinical use to supplement the current therapy. Our study establishes that the human lactoferrin-derived peptide LF-33 possesses a potent endotoxin-neutralizing capacity in vitro and in vivo as shown by its ability to suppress endotoxin-induced LAL coagulation and TNF-α secretion by RAW 264.7 cells and to protect animals from a lethal endotoxin challenge.

Because the lipid A portion of endotoxin is responsible for the activation of LAL (15), stimulation of TNF-α secretion (29), and lethality in mice (29), LF-33 likely exerts its antiendotoxin actions by binding to the lipid A portion and consequently blocking the biological effects of endotoxin. This is supported by its direct neutralization of lipid A in addition to

![Graph](image_url)

**Fig. 1.** Dose-dependent suppression by LF-33 of endotoxin-induced TNF-α secretion by RAW 264.7 cells. Endotoxin at 10 ng/ml was incubated at 37°C for 1 h with LF-33 at the concentrations indicated before being exposed to RAW 264.7 cells. All data were the means of triplicates in representative experiments.

**TABLE 2.** Suppression by antiendotoxin agents of endotoxin-induced TNF-α secretion by RAW 264.7 cells

<table>
<thead>
<tr>
<th>Agent (conc)</th>
<th>Lipid A</th>
<th>E. coli LPS</th>
<th>S. abortus equi LPS</th>
<th>P. aeruginosa LPS</th>
<th>N. meningitidis LPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endotoxin control</td>
<td>2,386 ± 269</td>
<td>4,928 ± 896</td>
<td>3,969 ± 443</td>
<td>4,813 ± 571</td>
<td>5,658 ± 770</td>
</tr>
<tr>
<td>LF-33 (2.5 μM)</td>
<td>239* ± 29.6</td>
<td>211* ± 31.4</td>
<td>886* ± 149</td>
<td>164* ± 23.3</td>
<td>1,624* ± 203</td>
</tr>
<tr>
<td>LF-27 (3 μM)</td>
<td>3,182 ± 412</td>
<td>4,912 ± 588</td>
<td>3,985 ± 497</td>
<td>4,633 ± 603</td>
<td>7,306 ± 1,008</td>
</tr>
<tr>
<td>Polymyxin B (2.5 μM)</td>
<td>537* ± 77.9</td>
<td>314* ± 42.6</td>
<td>1,115* ± 181</td>
<td>246* ± 32.5</td>
<td>2,829* ± 455</td>
</tr>
<tr>
<td>Human serum (10%)</td>
<td>2,663 ± 357</td>
<td>4,817 ± 964</td>
<td>5,726 ± 1,126</td>
<td>4,426 ± 677</td>
<td>8,817 ± 1,711</td>
</tr>
</tbody>
</table>

* Endotoxin was incubated with test agents at the concentrations indicated at 37°C for 1 h before being exposed to RAW 264.7 cells.

b TNF-α secretion induced by endotoxin at 10 ng/ml, *, significantly different from control value at a one-tailed P value of <0.05 in the unpaired t test.
four different types of endotoxin (Table 1). The only difference between the sequence of LF-33 and LF-27 is that LF-27 lacks the first six residues (GRRRRS) at the N terminus of LF-33. Remarkably, this deletion led to a dramatic loss of the endotoxin-neutralizing capacity of the peptide in the LAL assay and complete loss in the TNF-α bioassay (Tables 1 and 2), indicating the importance of the cationic head of LF-33 in neutralizing endotoxin. This cluster of basic residues has previously been shown to be required for the binding of lactoferrin to other anionic molecules, including glycosaminoglycans (20). Because most known antiendotoxin peptides are cationic in nature and both the lipid A and oligosaccharide core portion of LPS are anionic, electrostatic forces may contribute to the binding of endotoxin and the neutralizing cationic peptides. Indeed, the presence of additional ethanolamine groups (positively charged) in the lipid A portion of LPS from N. meningitidis and S. abortus equi, but their absence in LPS from E. coli and P. aeruginosa (27, 30), is consistent with the observed greater potency of LF-33 and polymyxin B in suppressing endotoxin secretion induced by LF-33 from the latter types of bacteria compared to the former types (Table 2 and Fig. 1).

LF-27 showed some detectable antiendotoxin activity against lipid A and E. coli LPS but was essentially inactive against the other three types of LPS examined in the LAL assay (Table 1) and completely inactive in inhibiting the TNF-α production induced by all five of the endotoxins tested (Table 2). These apparent discrepancies likely reflect the difference in affinities of LF-27 for the different types of endotoxins and the difference in sensitivities and complexities of the two assay systems. The LAL assay is more than 100 times more sensitive than the TNF-α bioassay for detecting endotoxin and therefore would allow the low-affinity binding between LF-27 and endotoxin to be detected.

The endotoxin-neutralizing activity of human serum has been observed previously in the Limulus assay (8, 42) and confirmed by our study, as shown in Table 1 and Fig. 2. Noticeably, much lower concentrations (<2.5% compared to >10%) of human serum are needed to neutralize the endotoxin activity measured in the Limulus assay (Table 1) than in the cell assay (endotoxin-induced TNF-α secretion by RAW 264.7 cells) (Fig. 2 and Table 2). Binding of serum proteins to endotoxin neutralizes the endotoxin activity in the Limulus assay by preventing endotoxin from activating LAL (8). However, this is not necessarily true in the cell assay. It is now known that the initial step in the endotoxin-induced cellular response is the binding of endotoxin to serum LPS-binding protein (LBP). Endotoxin in this complexed form is much more effective than free endotoxin in binding to CD14, a glycosylphosphatidylinositol-anchored membrane protein on myeloid cells (22, 34), and subsequently triggering and enhancing the production and release of inflammatory mediators including TNF-α (38). Thus, in the cell assay, LBP in the serum can counteract the endotoxin-neutralizing activity of other serum LPS-binding molecules such as lipoproteins. In addition, since EDTA potentiates and divalent cations (Mg²⁺ and Ca²⁺) reduce the endotoxin-neutralizing capacity of human serum (25, 42), the presence of divalent cations in the incubation medium in the cell assay should further decrease the endotoxin-neutralizing capacity of the serum.

![FIG. 2. Dose-dependent suppression by LF-33 of endotoxin-induced TNF-α secretion by RAW 264.7 cells in culture medium containing 10% human serum.](image)

**TABLE 3. Suppression by antiendotoxin peptides of endotoxin-induced TNF-α secretion by RAW 264.7 cells in culture medium containing 10% human serum.**

<table>
<thead>
<tr>
<th>Peptide (conc)</th>
<th>Lipid A</th>
<th>E. coli LPS</th>
<th>S. abortus equi LPS</th>
<th>P. aeruginosa LPS</th>
<th>N. meningitidis LPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endotoxin control</td>
<td>2,663 ± 337</td>
<td>4,817 ± 964</td>
<td>5,726 ± 1126</td>
<td>4,428 ± 677</td>
<td>8,817 ± 1,711</td>
</tr>
<tr>
<td>Polymyxin B (2.5 µM)</td>
<td>1,209* ± 199</td>
<td>1,259* ± 321</td>
<td>4,090 ± 806</td>
<td>4,206 ± 956</td>
<td>8,181 ± 1,032</td>
</tr>
<tr>
<td>LF-33 (2.5 µM)</td>
<td>1,518* ± 311</td>
<td>1,938* ± 376</td>
<td>5,627 ± 1,037</td>
<td>2,776* ± 478</td>
<td>7,998 ± 976</td>
</tr>
<tr>
<td>LF-33 (10 µM)</td>
<td>185 ± 25.6</td>
<td>369 ± 67.1</td>
<td>1,191 ± 264</td>
<td>833 ± 138</td>
<td>6,473 ± 787</td>
</tr>
</tbody>
</table>

* Endotoxin was incubated at 37°C for 1 h with peptides at the concentrations indicated in culture medium containing 10% human serum before being exposed to RAW 264.7 cells.

**TABLE 4. Suppression by antiendotoxin peptides of endotoxin-induced TNF-α secretion by RAW 264.7 cells in culture medium containing 10% human serum: effect of the mixing sequence with serum.**

<table>
<thead>
<tr>
<th>Peptide (conc)</th>
<th>Lipid A</th>
<th>E. coli LPS</th>
<th>S. abortus equi LPS</th>
<th>P. aeruginosa LPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endotoxin control</td>
<td>4,817 ± 964</td>
<td>4,817 ± 964</td>
<td>4,428 ± 677</td>
<td>4,428 ± 677</td>
</tr>
<tr>
<td>LF-33 (2.5 µM)</td>
<td>575** ± 115</td>
<td>1,938* ± 376</td>
<td>610** ± 160</td>
<td>2,776* ± 478</td>
</tr>
<tr>
<td>Polymyxin B</td>
<td>525** ± 130</td>
<td>1,259* ± 321</td>
<td>883** ± 261</td>
<td>4,206 ± 956</td>
</tr>
</tbody>
</table>

* TNF-α secretion induced by endotoxin at 10 ng/ml. *, significantly different from control value at a one-tailed P value of <0.05 in the unpaired t test; **, significantly different from the serum-first value for the same peptide at a one-tailed P value of <0.01 in the unpaired t test.
LF-33 appears to be more potent than polymyxin B at suppressing endotoxin-induced LAL coagulation and TNF-α secretion by RAW 264.7 cells under serum-free conditions (Table 1 and 2). This suggests that LF-33 may have a greater intrinsic capacity to neutralize endotoxin than polymyxin B does. In the presence of human serum, however, their antien-
dotoxin potencies become more similar since, although human
serum significantly attenuates the endotoxin-neutralizing ca-
pacity of both peptides, it has a greater blocking effect on LF-
33 (compare Tables 2 and 3). A similar effect of human serum
has also been observed with other cationic antiendotoxin pep-
tides such as anti-LPS factor-derived peptides (28) and a synthetic antiendotoxin peptide (5) in different assay
systems. This appears to be due to the interaction of these
peptides with serum proteins that effectively reduce the avail-
ableity of the peptides for binding to endotoxin. Consistent with
this explanation is our observation that mixing LF-33 with
serum before endotoxin dramatically reduces the ability of the
peptide to suppress endotoxin-induced TNF-α secretion (Ta-
ble 4). For example, serum LBP may compete with LF-33 in
binding to endotoxin, since lactoferrin has recently been shown
to inhibit the endotoxin interaction with CD14 by competing
for the binding of endotoxin to LBP (7). The blocking effect
of human serum may partly explain the inability of a low dose of
LF-33 to protect mice against the lethality of endotoxin when
the peptide was injected into blood after i.p. injection of en-
dotoxin, whereas almost complete protection was observed
when they were mixed before i.p. injection (Table 5). Thus,
increasing the dose of LF-33 could overcome the serum block-
ing effect (Table 3 and Fig. 2) and protect the mice against the
lethality of endotoxin even when the peptide was injected sepa-
rately from endotoxin (Table 5).

In conclusion, we have shown that a novel synthetic peptide
representing the minimal sequence that mediates binding of
human lactoferrin to glycosaminoglycans, LF-33, has potent
endotoxin-neutralizing properties in vitro and in vivo against
lipid A and different types of LPS. The endotoxin-neutralizing
capacity of LF-33 is greater than that of polymyxin B when
tested in serum-free media and comparable to that of polyme-
xin B in the presence of human serum. In a separate study,
LF-33 has also been found to be bactericidal to various gram-
negative bacteria (20a). The dual properties of LF-33 in neu-
tralizing endotoxin and killing bacteria may present potential
advantages over the conventional antibiotics such as β-lactams
and quinolones, since these antibiotics are known to promote
endotoxin release but have no endotoxin-neutralizing activity
and can thus cause endotoxemia during antimicrobial therapy
(9, 35). Considering that cationic peptides generally have a
short half-life in blood while clinical endotoxemia can be
interrupted and recurrent, we are currently investigating agents
that can overcome the serum attenuation of the anti-LPS po-
tency of these peptides and are designing analogues with en-
hanced half-life and efficacy in blood.

ACKNOWLEDGMENTS

We thank Claus Koch of the Statens Seruminstitut, Copenhagen,
Denmark, for providing us with the essential regents for the Limulus
ELISA and Carl E. Frasch, Che-Hung Lee, and Karin Elkins from the
U.S. Food and Drug Administration for their valuable suggestions.

REFERENCES

1. Appelmelk, B. J., Y.-Q. An, M. Geerts, B. G. Thijs, H. A. DeBoer, D. M.
2. Bellamy, W. M., Takase, K. Yamashita, H. Wakabayashi, K. Kawase, and M.
3. Beutler, B., and A. Cerami. 1988. Tumor necrosis, cachexia, shock, and infamma-
4. Cooperstock, M. S. 1974. Inactivation of endotoxin by polymyxin B. Antimi-
5. Demestri, M. T., M. Velucchi, L. Braici, A. Rustici, M. Porro, P. Villa, and
P. Ghezzi. 1996. Inhibition of LPS-induced systemic and local TNF production
by a synthetic anti-endotoxin peptide (SAEP-2). J. Endotoxin Res. 3:
445–454.
6. Elss-Rochard, E., A. Roseau, D. Legrand, M. Trif, V. Salmon, C. Matas,
J. Montrouge, and G. Spik. 1995. Lactoferrin-lipopolysaccharide interaction:
involvement of the 28-34 loop region of human lactoferrin in the high-affinity
binding to Escherichia coli O55:BS lipopolysaccharide. Biochem. J. 312:839–
845.
7. Elss-Rochard, E., D. Legrand, V. Salmon, A. Roseau, M. Trif, P. S. Tobias,
J. Mazaurier, and G. Spik. 1998. Lactoferrin inhibits the endotoxin interac-
tion with CD14 by competition with the lipopolysaccharide-binding protein.
60:596–601.
9. Evans, M. E., and M. Pollack. 1993. Effect of antibiotic class and concen-
tration on the release of lipopolysaccharide from Escherichia coli. J. Infect.
Dis. 167:1336–1343.
and S. M. Opal. 1994. Human neutrophil bactericidal/permeability-increas-
ing protein reduces mortality rate from endotoxin challenge: a placebo-
mediates lethal activity of killed gram-negative and gram-positive bacteria in
sensitization to the lethal effects of endotoxin. Proc. Natl. Acad. Sci. USA
76:5938–5943.
15. Iwanaga, S., T. Miyata, F. Tokunaga, and T. Muta. 1992. Molecular mech-
nism of hemolymph clotting system in Limulus polyphemus. Immunol. Today
16:87–92.
necrosis factor by bacteria expressing rough and smooth lipopolysaccharide
1995. Human CAP18: a novel antimicrobial lipopolysaccharide-binding pro-

Editor: R. N. Moore