Interleukin 5 (IL-5) Is Not Required for Expression of a Th2 Response or Host Resistance Mechanisms during Murine Schistosomiasis Mansoni but Does Play a Role in Development of IL-4-Producing Non-T, Non-B Cells

LAURA ROSA BRUNET,1‡ ELIZABETH A. SABIN,1‡ ALLEN W. CHEEVER,2 MANFRED A. KOPF,3 AND EDWARD J. PEARCE1‡

Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; Biomedical Research Institute, Rockville, Maryland 20852; and Basel Institute for Immunology, Basel, Switzerland

Received 12 November 1998/Returned for modification 17 December 1998/Accepted 26 March 1999

During schistosomiasis, interleukin-5 (IL-5)-dependent eosinophil responses have been implicated in immunopathology, resistance to superinfection, synergistic interactions with chemotherapeutic agents, and the inductive phase of the egg-induced Th2 response. We examined these issues in IL-5-deficient (IL-5−/−) mice. IL-5−/− and wild-type (WT) mice were indistinguishable in terms of susceptibility to primary infections and the ability to resist secondary infections. Moreover, hepatic pathology was similar in both strains apart from a relative lack of eosinophils and, during chronic infection, a significantly larger mast cell component in the granulomas of IL-5−/− mice. Splenocyte cytokine production in response to soluble egg antigen (SEA) or anti-CD3 revealed no significant differences except for heightened tumor necrosis factor alpha production by cells from chronically infected IL-5−/− mice compared to WT animals. In contrast, ionomycin-stimulated non-B, non-T (NBNT) cells from IL-5−/− mice produced significantly smaller IL-4 amounts than did NBNT cells from WT animals. This difference was not apparent following plate-bound anti-immunoglobulin E or SEA stimulation. The absence of IL-5 failed to affect the induction of Th2 responses in naive mice. Peritoneal exudate cells recovered from egg-injected IL-5−/− or WT mice produced equivalent levels of IL-4 following restimulation with SEA or anti-CD3.

Schistosomiasis is a helminthic infection affecting over 200 million people and causing severe disease in tens of millions (26). During infection, parasite eggs stimulate a strong type 2 response (17, 32, 43) which is essential for host survival (35). A characteristic feature of infection is the development of blood eosinophilia, mediated by interleukin-5 (IL-5), the principal eosinophil differentiation factor (7, 39), which is produced in quantity by Th2 cells and other cells. Parasite eggs are the major stimulus for this type 2 response (17, 32, 43), and eosinophils are a major component (50%) of the granulomas which form around tissue-trapped eggs (9, 28, 33). Early investigators have reported smaller granulomas, increased egg burdens, and more extensive tissue damage in mice depleted of eosinophils, leading to a proposed role for these cells both in the successful sequestration of egg-derived hepatotoxins and in the destruction of eggs (4, 20, 24, 29). IL-5-induced eosinophilia has also been correlated with protective immunity, as eosinophil-depleted mice showed increased susceptibility to superinfection (25). In contrast, more recent studies found no significant role for IL-5 or eosinophilia in immunity or pathogenesis. Mice treated with an anti-IL-5 monoclonal antibody (MAb) showed tissue damage and concomitant immunity levels comparable to those of control animals (41, 42).

In an attempt to address these conflicting findings, we compared disease progression and resistance to superinfection in wild-type (WT) versus IL-5-deficient (IL-5−/−) mice, which are unable to develop eosinophilia (22). We also evaluated immune response development in these mice, as our previous data indicated a role for eosinophils in producing IL-4 early in the response to schistosome eggs, and we have postulated that this IL-4 plays a role in allowing Th2 response development (37). Lastly, we used infected IL-5−/− mice to address the issue, raised by others previously, of whether eosinophils cooperate with antibodies in an antibody-dependent cellular cytotoxicity reaction to kill drug (praziquantel)-damaged schistosomes (2, 3, 14, 36). Remarkably, given their prevalence during infection, we could find little evidence that eosinophils play any essential role during murine schistosomiasis.

MATERIALS AND METHODS

Infections and immunizations. Schistosoma mansoni (Puerto Rican strain NMRI)-infected Biomphalaria glabrata snails obtained from F. Lewis (Biomedical Research Institute, Rockville, Md.) were maintained in our laboratory. IL-5−/− C57BL/6 mice (22) and WT C57BL/6 mice (Taconic, Germantown, N.Y.) were infected percutaneously with ~50 or ~75 cercariae, and disease progression was monitored. At the times of acute (6 weeks postinfection) and chronic (16 to 24 weeks postinfection) disease, parasitological and immunological analyses were performed (35). For immunizations, eggs were isolated from the hepatic tissues of infected mice, washed extensively into sterile phosphate-buffered saline (PBS) and stored at ~70°C. Mice were injected intraperitoneally with a 23-gauge needle with 5 × 107 eggs in 100 μl of PBS or with 100 μl of PBS alone (38).

Parasite and cell recovery. Adult schistosomes were recovered by perfusion (46). Liver samples were collected to quantitate hepatic egg burdens (6), and additional samples were fixed for histological evaluation of tissue damage and granuloma volumes. Spleens and peritoneal exudate cells (PEC) were prepared as previously described (35, 38). Splenocytes (2 × 106 cells/well) and PEC (106 cells/well) were stimulated in 96-well flat-bottom plates with soluble egg antigen.
TABLE 1. Comparison of disease progression in IL-5−/− and WT mice

<table>
<thead>
<tr>
<th>Stage of disease (wk)</th>
<th>Mice</th>
<th>Worm burden</th>
<th>Hepatic egg burden/g</th>
<th>Granuloma volume (mm³)</th>
<th>Cellular infiltrate in granuloma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% Eosinophils</td>
</tr>
<tr>
<td>Acute (8)</td>
<td>IL-5−/−</td>
<td>22.7 ± 2.2</td>
<td>12,141 ± 2,866</td>
<td>28.9 ± 3.0</td>
<td>7.5 ± 1.8b</td>
</tr>
<tr>
<td></td>
<td>WT</td>
<td>20.0 ± 6.4</td>
<td>15,840 ± 2,344</td>
<td>26 ± 4.8</td>
<td>55 ± 2.4</td>
</tr>
<tr>
<td>Chronic (>16)</td>
<td>IL-5−/−</td>
<td>11.7 ± 2.2</td>
<td>8,500 ± 884</td>
<td>15.1 ± 1.3</td>
<td>0.7 ± 0.2b</td>
</tr>
<tr>
<td></td>
<td>WT</td>
<td>12.0 ± 0.5</td>
<td>6,400 ± 1,415</td>
<td>18.6 ± 4.7</td>
<td>38.3 ± 5.9</td>
</tr>
</tbody>
</table>

Results are means ± standard errors and are representative of at least three separate experiments.
p < 0.05 compared with WT mice.
ND, none detected.

S. MANSONI INFECTION IN IL-5 KNOCKOUT MICE 3015

RESULTS AND DISCUSSION

Infection and disease. We found that compared with WT mice carrying infections similar in intensity, IL-5−/− mice failed to develop more severe morbidity, as measured by weight loss, and did not suffer increased mortality (data not shown). Moreover, during both acute and chronic disease, the lack of IL-5 had no effect on either worm or egg burdens (Table 1). We detected no significant differences in granuloma volumes of acutely infected IL-5−/− versus WT mice (Table 1). During chronic disease, in all but one of four experiments, IL-5−/− mice downregulated their granulomas as efficiently as did WT mice (Table 1). In IL-5−/− mice, the granulomatous eosinophilic infiltrate was significantly reduced but not completely absent (Table 1). This may be explained by the effects that other chemotactic factors, such as eotaxin, may have on eosinophil recruitment (10). Surprisingly, the number of mast cells in the granuloma was dramatically increased during chronic infection in IL-5−/− mice (Table 1); the mechanism underlying this mast cell elevation remains to be defined.

TH2 RESPONSE DEVELOPMENT. Schistosome eggs, injected into naive mice, induce a T-cell-independent, IL-5-dependent, early eosinophilia (12 to 24 h postinfection) at the site of antigen deposition (37, 38). Eosinophils in the infiltrate were found to produce IL-4, leading us to hypothesize that this cell type plays a role in promoting Th2 cell differentiation (37). However, we found that during infection, the lack of IL-5 and of eosinophilia had only a minimal effect on the development of the Th2 response (Table 2). Acutely and chronically infected WT and IL-5−/− animals produced comparable levels of type 1 (IFN-γ and IL-2) and type 2 (IL-4 and IL-10) cytokines (Table 2). To further examine whether the absence of IL-5 affects Th2 response development, we injected isolated eggs intraperitoneally into naive WT and IL-5−/− animals in a manner known to induce IL-5-dependent early IL-4 production followed by a Th2 response (37). Ten days later, we measured in vitro IL-4 production by SEA- or anti-CD3-stimulated PEC. We found no difference in the IL-4 levels produced in response to either of these stimuli by PEC from WT and IL-5−/− mice (Fig. 1). We concluded that the absence of IL-5 does not preclude the development of the Th2 response.

In addition to Th2 cells and eosinophils, splenic NBNT cells are a source of significant levels of IL-4 in schistosome-infected mice (8, 51). The expansion of this population of IL-4-producing cells is IL-4 dependent (1, 31, 40). Among these cells is a subset of FcεRI− basophils that can respond to plate-bound anti-IgE, antigens (via FcεRI-bound antibody), and ionomycin, by making IL-4 (8). We investigated the role of IL-5 in the development of the NBNT-cell population by comparing IL-4 levels following SEA and anti-IgE stimulation of NBNT cells from WT and IL-5−/− mice (Fig. 2). FcεRI cross-linkage by plate-bound anti-IgE induced the production of comparable levels of IL-4 by both WT and IL-5−/− NBNT-cell populations. In contrast, following stimulation with ionomycin, NBNT cells from infected IL-5−/− mice made significantly less IL-4 than did NBNT cells from infected WT animals. An attractive explanation for the latter result is that among the whole NBNT-cell population, eosinophils, which in the mouse are FcεRI− (21), contribute to IL-4 production, and thus, NBNT-cell-derived IL-4 is reduced in eosinophil-deficient, infected IL-5−/− mice. Since plate-bound anti-IgE, which targets mouse basophils, stimulates similar levels of IL-4 production by NBNT cells from WT and IL-5−/− mice, we can conclude that the basophil response is unaffected by the absence of IL-5.

Since type 2 cytokines can suppress the production of proinflammatory mediators secreted by macrophages activated by type 1 cytokines (12, 15, 23, 30), we also assessed whether there was a difference in the levels of tumor necrosis factor alpha (TNF-α) and NO made by spleen cells from infected IL-5−/−
and WT mice. Whereas NO levels produced by cells from infected knockout and WT mice were similar during chronic, but not acute, infection, TNF-α production by cells from IL-5−/− mice was significantly elevated compared to that by cells from WT animals (Table 2). Based on the increased mast cell infiltrate levels in the granulomas of infected IL-5−/− mice (Table 1), we are currently testing the possibility that heightened TNF-α production is the result of an increased number of mast cells (16) in the spleens of chronically infected IL-5−/− versus WT mice.

Resistance to superinfection. Epidemiological studies in areas where schistosomes are endemic have correlated type 2 responses with resistance to reinfection (13, 18, 34), and it is believed that prior to treatment, infected hosts exhibit concomitant immunity, to which adult worms are refractory but newly invading larval worms are susceptible (11, 47). Work on concomitant immunity in the mouse has indicated that both nonspecific mechanisms, including changes in the hepatic vasculature due to increased portal pressure resulting from granulomatous lesions (19, 52), and specific components of the immune response (45) mediate this process. Eosinophils have

Table 2. Comparison of immune responses developed during acute (week 8) and chronic (week 16) infections by IL-5−/− and WT mice

<table>
<thead>
<tr>
<th>Infection and mice</th>
<th>IL-4 concn (U/ml)</th>
<th>IL-10 concn (U/ml)</th>
<th>IL-2 concn (U/ml)</th>
<th>IFN-γ concn (pg/ml)</th>
<th>TNF-α concn (pg/ml)</th>
<th>NO concn (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-5−/−</td>
<td>36.2 ± 7.2</td>
<td>28 ± 17.2</td>
<td>4.8 ± 0.7</td>
<td>19.2 ± 3.2</td>
<td>19.5 ± 2.2</td>
<td>106 ± 31.3</td>
</tr>
<tr>
<td>WT</td>
<td>34.8 ± 6.4</td>
<td>25 ± 16.2</td>
<td>4.2 ± 0.5</td>
<td>12.9 ± 1.6</td>
<td>17.5 ± 2.4</td>
<td>73 ± 19.8</td>
</tr>
<tr>
<td>Chronic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-5−/−</td>
<td>0.53 ± 0.3</td>
<td>0.28 ± 0.02</td>
<td>0.05 ± 0.002</td>
<td>0.05 ± 0.002</td>
<td>0.02 ± 0.004</td>
<td>0.03 ± 0.005</td>
</tr>
<tr>
<td>WT</td>
<td>0.5 ± 0.3</td>
<td>0.25 ± 0.03</td>
<td>0.05 ± 0.003</td>
<td>0.05 ± 0.003</td>
<td>0.02 ± 0.005</td>
<td>0.03 ± 0.005</td>
</tr>
</tbody>
</table>

Results are means ± standard errors and are representative of at least three separate experiments. ND, not detected.

P < 0.05 compared with WT mice.

FIG. 1. Comparison of IL-4 cytokine levels from PEC of WT and IL-5−/− mice (three animals per group) injected 10 days earlier with either *S. mansoni* eggs or PBS. PEC were pooled and cultured for 72 h in duplicate wells in the presence of anti-IL-4R either alone, with SEA, or with plate-bound anti-CD3. Data are from one experiment; the experiment was repeated three times with similar results. Data are expressed as means ± standard errors.

FIG. 2. Comparison of IL-4 levels produced by NBNT cells of WT and IL-5−/− mice (at least three animals per group) infected with *S. mansoni* (8 weeks postinfection). NBNT cells were cultured for 24 h with PBS, SEA, plate-bound anti-IgE, or ionomycin. Results are from one experiment and are representative of data from three separate experiments. Data are expressed as means ± standard errors. An asterisk indicates P < 0.05 compared with WT animals.
in the absence of IL-5. Our data, which in part support previous findings that eosinophils are the predominant leukocytes in the eosinophil population (41, 42), can be interpreted in several ways. First, previously identified roles for eosinophils during schistosomiasis are nonessential or redundant. Second, because in contrast to those in many other species, mouse eosinophils are FcERI+ (21), they cannot interact with IgE, the isotype most likely to be important for many of the functions in which eosinophils have been implicated (IgE levels in infected IL-5−/− mice are not significantly lower than those in infected WT mice; 35a). Third, the eosinophils which remain in an IL-5−/− animal are sufficient to perform all of the functions normally performed by the IL-5-expanded population. Given the higher-than-expected percentage of eosinophils in the granulomas of infected IL-5−/− mice, we suspect that the latter finding is most plausible explanation for our results. This issue is currently being tested experimentally by attempting to deplete eosinophils in IL-5−/− mice by using RB6-8C5 (anti-GR-1 MAb) (48).

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health grant AI32573 to E.J.P. The Basel Institute was founded by and is supported by Hoffmann-La Roche. L.R.B. is supported by NRSA AI-09512. E.A.S. was supported by NRSA AI-09227 while at Cornell University. We thank Padraic Fallon and Esther Racoosin for helpful discussions.

REFERENCES

8. Cohn, R. G., M. Williams, A. Sher, and J. P. Caulfield. 1995. Schistosoma mansoni infection in IL-5 knockout mice. S. MANSONI INFECTION IN IL-5 KNOCKOUT MICE 3017

FIG. 3. Comparison of resistance to superinfection in WT and IL-5−/− mice. Worm burdens in infected WT and IL-5−/− mice were determined after perfusion. Mice received a primary infection (group A; four WT and six IL-5−/− mice) or a secondary infection (group B; five WT and five IL-5−/− mice), or a secondary infection following removal of eosinophils (group C; six WT and six IL-5−/− mice). Resistance to reinfection was observed in both WT (67.0% ± 4.1%) and IL-5−/− (53.6% ± 10.2%) mice in group B. Data are expressed as means ± standard errors. An asterisk indicates *P < 0.05 compared with untreated groups.

FIG. 4. Effect of praziquantel on worm burden in IL-5−/− and WT mice. Mice (three animals per group) were treated with praziquantel in carrier or with praziquantel. Data are expressed as means ± standard errors. Results are representative of two separate experiments. An asterisk indicates *P < 0.05 compared with untreated groups.
Brunet ET AL. INFECT. IMMUN.

3018

Editor: J. M. Mansfield