Additive Attenuation of Virulence of *Streptococcus pneumoniae* by Mutation of the Genes Encoding Pneumolysin and Other Putative Pneumococcal Virulence Proteins

ANNE M. BERRY AND JAMES C. PATON*

Molecular Microbiology Unit, Women’s and Children’s Hospital, North Adelaide, South Australia 5006, Australia

Received 2 June 1999/Returned for modification 5 August 1999/Accepted 26 October 1999

Although the polysaccharide capsule of *Streptococcus pneumoniae* has been recognized as a sine qua non of virulence, much recent attention has focused on the role of pneumococcal proteins in pathogenesis, particularly in view of their potential as vaccine antigens. The individual contributions of pneumolysin (Ply), the major neuraminidase (NanA), autolysin (LytA), hyaluronidase (Hyl), pneumococcal surface protein A (PspA), and choline-binding protein A (CbpA) have been examined by specifically mutagenizing the respective genes in the pneumococcal chromosome and comparing the impact on virulence in a mouse intraperitoneal challenge model. Mutagenesis of either the ply, hyl, or pspA gene in *S. pneumoniae* D39 significantly reduced virulence, relative to that of the wild-type strain, indicating that the respective gene products contribute to pathogenesis. On the other hand, mutations in nanA, hyl, or cbpA had no significant impact. The virulence of D39 derivatives carrying a ply deletion mutation as well as an insertion-duplication mutation in one of the other genes was also examined. Mutagenesis of either nanA or lytA did not result in an additional attenuation of virulence in the ply deletion background. However, significant additive attenuation in virulence was observed for the strains with ply-hyl, ply-pspA, and ply-cbpA double mutations.

Streptococcus pneumoniae is an important human pathogen, causing life-threatening invasive diseases such as pneumonia, meningitis and bacteremia, as well as less serious but highly prevalent infections such as otitis media and sinusitis. The high morbidity and mortality associated with pneumococcal disease are exacerbated by the rate at which this organism is acquiring resistance to multiple antibiotics (23). Polysaccharide pneumococcal vaccines based on purified capsular polysaccharides have been available for nearly two decades, but their clinical efficacy has been limited by poor immunogenicity in high-risk groups (particularly young children) (16). Furthermore, antipolysaccharide antibodies confer a strictly serotype-specific protection, and only 23 of the 90 known serotypes are covered by existing formulations. The problem of poor vaccine immunogenicity in children is being addressed by conjugation of the polysaccharides to protein carriers. However, serotype coverage will be more limited, as it is unlikely that more than 11 serotypes will be included in such conjugate formulations. In view of this, much recent attention has focused on the possibility of developing vaccines based on pneumococcal protein antigens common to all serotypes (1, 12, 34).

Pneumococcal proteins which contribute to pathogenesis are obvious candidates for inclusion in such vaccines, and of those proteins studied to date, the thiol-activated toxin pneumolysin (Ply) and pneumococcal surface protein A (PspA) are the best characterized (12, 33, 35). Ply is a multifunctional protein having both cytotoxic and complement activation properties (11, 38). It is located in the cytoplasm but is released when pneumococci undergo autolysis (33, 35). PspA is a member of a family of structurally related choline-binding surface proteins (19, 20, 46, 47); its precise function is uncertain, although it has recently been shown to be capable of binding human lactoferrin (21). Both Ply and PspA are protective immunogens, and mutagenesis of the genes which encode them attenuates virulence of *S. pneumoniae* (1, 3, 7, 9, 10, 12, 13, 31, 45). The major pneumococcal autolysin (LytA) is also a choline-binding protein (19, 20) which contributes to virulence by mediating the release of Ply and possibly also inflammatory cell wall degradation products (4, 9, 26). A further choline-binding protein, CbpA (also referred to as SpA), has recently been shown to bind the secretory component of secretory IgA (22) and also appears to be an adhesin for cytokine-activated epithelial and endothelial cell lines (39). Pneumococci also produce a hyaluronidase (Hyl) (6) and at least two neuraminidases (NanA and NanB) (5, 14, 27), but the contributions of these to pathogenesis are uncertain (28, 36).

Clearly, development of an effective protein-based vaccine depends on a thorough understanding of the roles of the various putative virulence proteins in pathogenesis, as well as their relative contributions to virulence. Cost considerations will place a limit on the number of different antigens which might be included, and so it is crucial that the most important virulence determinants be covered. In the present study we have compared the virulence of wild-type *S. pneumoniae* D39 with otherwise isogenic derivatives carrying mutations in the genes encoding Ply, NanA, LytA, Hyl, PspA, or CbpA. The virulence of D39 derivatives carrying a ply deletion mutation as well as an insertion-duplication mutation in one of the other genes was also examined.

MATERIALS AND METHODS

Bacterial strains. The virulent type 2 *S. pneumoniae* strain D39 (NCTC 7466) and its highly transformable, nonencapsulated derivative Rx1 have been described previously (2, 40). Derivatives of D39 with an insertion-duplication mutation in lytA (designated LytAΔ) or with an in-frame deletion mutation in ply encoding a derivative of Ply lacking amino acids 55 to 437 (designated ΔPly) have also been described previously (4, 7). The pVA891-directed pspA-negative *S. pneumoniae* Rx1 derivative WGA4-1 (31) was kindly provided by D. E. Briles. Pneumococci were routinely grown in Todd-Hewitt broth with 0.5% yeast extract (THY) or on blood agar. Where appropriate, erythromycin was added to media at a concentration of 0.2 μg/ml.

* Corresponding author. Mailing address: Molecular Microbiology Unit, Women’s and Children’s Hospital, North Adelaide, S.A. 5006, Australia. Phone: 61-8-8204 6302. Fax: 61-8-8204 6051. E-mail: patonj@wch.sa.gov.au.
Escherichia coli K-12 DH5α (Bethesda Research Laboratories, Gaithersburg, Md.) was grown in Luria-Bertani broth (30) with or without 1.5% Bacto-agar (Difco Laboratories, Detroit, Mich.). Where appropriate, chloramphenicol or ampicillin was added to the broth to give a density of 10⁸ CFU/ml, were then collected by centrifugation, washed at high stringency, as described by Maniatis et al. (30). Probes specific for the various putative virulence genes were labelled with digoxigenin-11-dUTP (Boehringer Mannheim, Mannheim, Germany), according to the method of Feinberg and Vogelstein (17). The probes used were a 1.2-kb HindIII fragment containing the complete hlyA gene (20), a PCR product containing nucleotides nt 220 to 1986 of opd4 (46), a ClaI/EcoRI fragment comprising nt 1377 to 2786 of hyl (6), an EcoRI/HindIII fragment comprising nt 615 to 1803 of hyl (48), and filters, as described by Maniatis et al. (30). Southern hybridization analysis. Chromosomal DNA from the various *S. pneumoniae* D39 derivatives was restricted and electrophoresed on 1.0% agarose gels with a Tris-borate-EDTA buffer system, as described by Maniatis et al. (30).

Transformation. Transformation of *E. coli* with plasmid DNA was carried out by standard methods with CaCl₂-treated cells. *S. pneumoniae* Rx1 and D39 were transformed with chromosomal or plasmid DNA as described previously (48). Pneumococcal transformants were selected on blood agar containing 0.2 μg of erythromycin per ml.

RESULTS

Construction and characterization of *S. pneumoniae* mutants. *S. pneumoniae* D39 derivatives with insertion-duplication mutations in various genes were constructed by using plasmid pVA891, which encodes chloramphenicol and erythromycin resistance and can replicate in *E. coli* but not in *S. pneumoniae* (29). The first step of the mutagenesis procedure involves cloning an internal fragment of the respective gene into pVA891. For *nanA*, a 637-bp HindIII-SphI fragment corresponding to nt 1210 to 1847 of the *nanA* open reading frame (ORF) (14) was cloned into HindIII-SphI-digested pVA891. For *hyl*, a 673-bp ClaI-NcoI fragment corresponding to nt 1286 to 1959 of the *hyl* ORF (6) was cloned into the ClaI site of pVA891. A 200-bp internal fragment of *cbpA*, corresponding to nt 481 to 680 of the *cbpA* ORF (22) was amplified by PCR with primers designed with reference to the *cbpA* sequence deposited in GenBank (accession no. Y10818), with *S. pneumoniae* D39 DNA as the template. This was blunt-end ligated into the EcoRV site of pVA891. Each of these constructs was transformed into *E. coli* DH5α.

In a previous study (10) we found that the efficiency of direct transformation of the encapsulated type 2 strain D39 to erythromycin resistance, using recombinant pVA891 derivatives, was very low, even in the presence of exogenous competence factor. Therefore we adopted a two-step approach, initially transforming the highly transformable *S. pneumoniae* Rx1 with plasmid DNA purified from the various *E. coli* DH5α clones. Chromosomal DNA from representative erythromycin-resistant transformants from each reaction was subjected to Southern hybridization analysis to confirm interruption of the respective gene with the pVA891 sequences, by using probes specific for pVA891 and either *nanA*, *hyl*, or *cbpA* (results not shown). DNA from these derivatives, as well as from the psaA-negative Rx1 derivative WG44-I, was then used to transform the encapsulated parental strain D39, and erythromycin-resistant transformants were isolated from two independent transformation experiments for each interrupted gene. Chromosomal DNA from each of these was subjected to Southern hybridization analysis using probes specific for the respective putative virulence gene or pVA891, to confirm interruption of the respective D39 gene with the vector sequences (Fig. 1). *S. pneumoniae* D39 transformants with confirmed insertion-duplication mutations in *nanA*, *hyl*, *psaA*, or *cbpA* were designated *NanA*², *Hyl*², *PspA*², and *CbpA*², respectively.

Pneumococci with mutations in *ply* as well as the other genes were constructed by transformation of *S. pneumoniae* D39 Δ*ply* with chromosomal DNA from the various Rx1 derivatives or from *S. pneumoniae* D39 *lytA*². Again, interruption of the respective gene in erythromycin-resistant transformants isolated from two independent transformation experiments was confirmed by Southern hybridization analysis (Fig. 1). Absence of the *ply* ORF in each of these double mutants was also confirmed by PCR, as previously described (7). *S. pneumoniae* D39 Δ*ply* transformants with confirmed insertion-duplication mutations in *nanA*, *hyl*, *psaA*, or *cbpA* were designated *Ply-NanA*², *Ply-Hyl*², *Ply-PspA*², or *Ply-CbpA*², respectively.

To confirm that the various single or double mutations did not affect the in vitro growth rate, the *S. pneumoniae* D39 derivatives were grown overnight on blood agar, inoculated into serum broth, and incubated at 37°C for 5 h. During this period, there was no significant difference in growth rate between any of the mutants and wild-type D39, as judged by viable count (result not shown). To confirm the phenotype of the various *S. pneumoniae* D39 derivatives, lysates of fresh THY cultures were tested with the hemolysin assay for *Ply* activity and direct enzyme assays for *NanA* and *Hyl*. The pneumolysin titer of the wild-type *S. pneumoniae* D39 lysate was 2,048 hemolytic units (HU) per ml of culture, but Δ*ply* lysates contained <0.2 HU of pneumolysin per ml (the sensitivity limit of the assay). Pneumolysin activity was also undetectable in any of the Δ*ply* double mutants. In contrast, all other *S. pneumoniae* D39 derivatives expressed the wild-type level of pneumolysin activity (2,048 HU/ml). Wild-type D39 and Δ*ply* lysates contained 48.7 and 48.9 mU of neuraminidase activity per ml, respectively, but no activity (that is, <0.15 mU/ml) could be detected in lysates of either *NanA*² or *Ply-NanA*². Similarly, D39 and Δ*ply* lysates contained 84.8 and 83.6 U of hyaluronidase activity per ml, respectively, but no activity could be detected in lysates of either *Hyl*² or *Ply-Hyl*². Expression of *PspA* and *LytA* was assessed by Western blot analysis using
polyclonal mouse antisera raised against purified LytA and PspA (anti-CbpA was not available) (Fig. 2). The anti-PspA serum labelled two species in both D39 and \(\Delta \text{Ply} \) lysates with approximate sizes of 75 and 155 kDa, but neither of these species was detectable in lysates of \(\Delta \text{Ply-PspA}^+ \). The anti-PspA serum used was raised against a 43-kDa N-terminal fragment of PspA purified from recombinant \(E. \text{coli} \) expressing a truncated \(\text{pspA} \) gene from \(S. \text{pneumoniae} \) D39 (47). This fragment does not contain the choline-binding repeat domain common to several pneumococcal surface proteins, and so the presence of two immunoreactive bands is not a consequence of cross-reaction with another protein species. Talkington et al. (42) have previously reported an identical phenomenon with monoclonal anti-PspA for several \(S. \text{pneumoniae} \) strains including D39. They demonstrated that the low- and high-molecular-weight immunoreactive species corresponded to PspA monomers and noncovalently linked PspA dimers, respectively. The anti-LytA serum labelled a single species of the expected molecular size in both D39 and \(\Delta \text{Ply} \) lysates but not in lysates of LytA\(^-\) or \(\Delta \text{Ply-LytA}^- \) (Fig. 2). With both sera, all
the other *S. pneumoniae* D39 derivatives yielded immunoblot patterns similar to that seen for the wild type (result not shown).

Virulence studies. As an initial comparison of virulence, groups of 12 or 13 BALB/c mice were challenged i.p. with either D39, ΔPly, NanA−, Hyl−, PspA−, ΔPly-NanA−, ΔPly-Hyl−, or ΔPly-PspA−, at a dose of 103 CFU (Fig. 3). There was no significant difference in either median survival time or overall survival rate between groups challenged with D39, NanA−, and Hyl−. However, both the median survival time and the survival rate for the ΔPly group were significantly greater than those for the D39 group (*P < 0.002 and P < 0.025*, respectively). Similarly, both the median survival time and the survival rate for the PspA− group were significantly greater than those for the ΔPly group (*P < 0.002 and P < 0.05*, respectively), but they were not significantly different from those for the D39 group.*

When the comparative virulence of the various strains tested above was assessed at a higher i.p. dose (105 CFU), essentially similar results were obtained (Fig. 4). However, at this dose, a significant difference in virulence between D39 and PspA− was not detectable. Of the various D39 derivatives with mutations in a single gene, only ΔPly had a significantly greater survival time and higher survival rate than the wild-type strain (*P < 0.002 and P < 0.025*, respectively). LytA− was also significantly less virulent than D39 as judged by survival time (*P < 0.05*), but the survival rate was not significantly greater. Again, the double mutant ΔPly-Hyl− was less virulent than ΔPly, as judged by

FIG. 3. Survival times of mice after i.p. challenge. Groups of 12 or 13 BALB/c mice were injected i.p. with approximately 103 CFU of the indicated strains. Each datum point represents one mouse. The horizontal lines denote the median survival time for each group.

FIG. 4. Survival times of mice after i.p. challenge. Groups of 12 BALB/c mice were injected i.p. with approximately 105 CFU of the indicated strains. Each datum point represents one mouse. The horizontal lines denote the median survival time for each group.
both survival time and survival rate ($P < 0.05$ and $P < 0.05$, respectively). ΔPly-PspA$^-$ was also less virulent than PspA$^-$ as judged by both survival time and survival rate ($P < 0.002$ and $P < 0.025$, respectively). However, the difference in median survival time between the ΔPly-PspA$^-$ group (>21 days) and the ΔPly group (5.9 days) did not quite reach statistical significance ($0.05 < P < 0.1$). Furthermore, there was no significant difference in the virulence of ΔPly, LytA$^-$, and ΔPly-LytA$^-$.

In the second series of experiments, the virulence of D39, ΔPly, PspA$^-$, CbpA$^-$, ΔPly-PspA$^-$, and ΔPly-CbpA$^-$ was compared by challenging groups of 12 mice i.p., initially at a dose of 5×10^3 CFU (Fig. 5). Of the D39 derivatives with single mutations, ΔPly was the least virulent; both survival time and survival rate were significantly greater than those for either PspA$^-$ ($P < 0.002$ and $P < 0.025$, respectively), CbpA$^-$ ($P < 0.002$ and $P < 0.005$, respectively), and D39 ($P < 0.002$ and $P < 0.005$, respectively). The median survival time for the PspA group was significantly different from that for the D39 group ($P < 0.002$ in both cases). The median survival time for the CbpA$^-$ group (0.75 days) was indistinguishable from that for the D39 group. The differences in median survival time between the ΔPly group and either the PspA$^-$ or CbpA$^-$ group were also significant ($P < 0.002$ in both cases). The D39 derivatives with double mutations, ΔPly-PspA$^-$ and ΔPly-CbpA$^-$, were significantly less virulent than either D39 or any of the single mutants, as judged by both median survival time ($P < 0.002$, except for ΔPly-CbpA$^-$ versus ΔPly, for which $P < 0.02$), and survival rate ($P < 0.005$).

As confirmation of these findings, additional ΔPly-PspA$^-$, ΔPly-CbpA$^-$, and ΔPly-Hyl$^-$ mutants were isolated as described above, but from independent transformation experiments. The virulence of these independent mutants was then...
compared with that of \(\Delta \text{Ply} \), and with that of the original \(\Delta \text{Ply-PspA}^- \), \(\Delta \text{Ply-CbpA}^- \), and \(\Delta \text{Ply-Hyl}^- \) mutants, by i.p. challenge at a dose of approximately \(10^5 \) CFU. The virulence of these mutants relative to that of \(\Delta \text{Ply} \) was essentially as reported above, and there was no significant difference in either median survival time or overall survival rate between the respective pairs of independent mutants (results not presented).

In view of the previous report that CbpA may be an adhesin for cytokine-activated lung cells and that \(\text{cbpA} \) mutants have diminished capacity to colonize the nasopharynx of infant rats (39), virulence studies were also carried out with a mouse intranasal challenge model (Fig. 7). Both \(\Delta \text{Ply} \) and PspA were less virulent than D39, as judged by median survival time (\(P < 0.02 \) in both cases). The survival rate of the PspA group was also significantly greater than that of the D39 group (\(P < 0.05 \)). However, the intranasal virulence of CbpA was not significantly different from that of D39, as judged by either survival time or survival rate. Nevertheless, the \(\Delta \text{Ply-CbpA}^- \) group survived significantly longer than the \(\Delta \text{Ply} \) group (\(P < 0.05 \)) and the CbpA group (\(P < 0.002 \)). Both the median survival time and the survival rate of the \(\Delta \text{Ply-PspA}^- \) group were significantly greater than those of the \(\Delta \text{Ply} \) group (\(P < 0.002 \) and \(P < 0.01 \), respectively). However, although both the survival time and survival rate of the \(\Delta \text{Ply-PspA}^- \) group (\(> 21 \) days and 9 of 12) were numerically greater than those of the PspA group (6.8 days and 6 of 12), these differences did not reach statistical significance.

DISCUSSION

Although it has been known for a number of years that mutations in genes encoding Ply, PspA, and LytA reduce the virulence of *S. pneumoniae* (4, 10, 31), comparatively little is known of the impact of mutations in genes encoding other putative virulence factors. With the exception of a comparison of \(\text{lytA} \) and \(\text{ply} \) mutations in a type 3 pneumococcus (9), no previous studies have directly compared the virulence of strains with single mutations in the various virulence factor genes. Moreover, the impact of mutations in multiple virulence factor genes has not been examined before. In the present study, we have shown that *S. pneumoniae* D39 derivatives with either a deletion mutation in \(\text{ply} \) (\(\Delta \text{Ply} \)) or insertion-duplication mutations in \(\text{lytA} \) (\(\text{LytA}^- \)) or \(\text{pspA} \) (\(\text{PspA}^- \)) had significantly lower virulence for mice than did wild-type D39, as judged by both survival time and survival rate after i.p. challenge. In the i.p. model, the impact of the \(\text{ply} \) mutation was quantitatively greater than the \(\text{pspA} \) mutation, since when higher doses were tested, \(\Delta \text{Ply} \) was significantly less virulent than \(\text{PspA}^- \). However, the virulence of \(\Delta \text{Ply} \) was not significantly different from that of \(\text{LytA}^- \). In contrast, mutations in \(\text{nanA} \), \(\text{hyl} \), or \(\text{cbpA} \) did not result in detectable reduction in i.p. virulence. The effects on virulence observed for the various insertion-duplication mutants are not attributable to polar effects on downstream sequences, because in each case, strong transcription termination signals are located immediately 3' to the interrupted gene.

When the impact of combinations of the \(\text{ply} \) and other mutations was examined, a D39 derivative deficient in production of both Ply and NanA was no less virulent than the strain carrying the \(\text{ply} \) mutation on its own. The single mutant \(\text{nanA} \) was also fully virulent, suggesting that this neuraminidase plays a minimal role in the pathogenesis of pneumococcal sepsis. This is essentially in accordance with our previous finding that immunization with purified NanA confers only very weak protection against challenge with wild-type D39, and immunization with NanA and Ply provided no more protection than that achieved by immunization with Ply alone (28). The interpretation of both these findings is complicated to some extent by the fact that *S. pneumoniae* produces at least one other functional neuraminidase, NanB (5), which may have compensated for the absence or neutralization of NanA. Examination of the partial *S. pneumoniae* type 4 genome sequence (available at ftp://ftp.tigr.org/pub/data/s_pneumoniae/) also indicates the presence of an ORF on contig SP34 (designated \(\text{nanC} \)) which encodes a polypeptide with the structural features of a neuraminidase exhibiting approximately 50% deduced amino acid sequence identity to NanB. However, we have previously shown that the specific activity of NanB is much greater than that of NanB, and NanB also has a significantly lower pH optimum (5). When assayed at physiological pH with the fluorogenic substrate 2’-(4-methylumbelliferyl)-α-D-acetyleneuraminic acid, lysates of NanA exhibited less than 0.3% of the neuraminidase activity of D39 (result not presented). Of course, it remains a possibility that the specific activity of NanB (and perhaps also NanC) may be higher with natural substrates, or that the expression of either \(\text{nanB} \) or \(\text{nanC} \) is specifically up-regulated in vivo. We are currently attempting to construct
D39 derivatives with mutations in all three neuraminidase-encoding genes in order to resolve the remaining uncertainties concerning the role of these enzymes in pathogenesis of pneumococcal disease.

The D39 derivative deficient in production of both Ply and LytA was no less virulent than strains carrying either mutation on its own. We have previously demonstrated that although purified Ply and LytA were protective immunogens in mice against challenge with virulent pneumococci, no additive protection occurred when mice were immunized with both antigens (26). Furthermore, immunization with LytA provided no protection whatsoever against challenge with a Ply-negative pneumococcus. This suggested that the principal role of LytA in pathogenesis of invasive pneumococcal disease (at least in the i.p. challenge model) was to mediate release of Ply from the cells in vivo (26). This led us to predict that mutagenizing both ply and hyl would not result in additive attenuation of virulence; this prediction was upheld by the findings of the present study.

In contrast to the results above, the double mutants Δply-hyl, Δply-CbpA, and Δply-PspA were all significantly less virulent than any of the D39 derivatives with single mutations. This was unexpected for Δply-hyl and Δply-CbpA, because the single mutants Hyl− and CbpA− appeared to be as virulent as D39, even at the lowest dose tested. The additional attenuation of virulence achieved by mutagenizing two virulence factor genes was very considerable indeed. At the maximum i.p. dose tested (8 × 10⁶ CFU), the survival rates for mice challenged with Δply-CbpA− and Δply-PspA− were 67 and 75%, respectively. The i.p. 50% lethal dose of wild-type D39 in this strain of mice is <10⁸ CFU. Thus, mutagenesis of either of these pairs of virulence genes resulted in at least a 10-fold increase in 50% lethal dose. Such a massive impact on virulence has been observed previously only by transposon mutagenesis of S. pneumoniae (15) and possibly also Zn²⁺ (25). However, mutagenesis of pspa has recently been reported to have pleiotropic effects, including reduced expression of CbpA and other potentially important choline-binding surface proteins (32).

In a previous study, Rosenow et al. (39) demonstrated that CbpA-deficient pneumococci exhibit a reduced capacity to colonize the nasopharynges of infant rats, but there was no apparent impact on virulence in a model of sepsis. While our findings for CbpA− are consistent with the latter result, the additional attenuation of virulence of Δply-CbpA− with respect to Δply clearly indicates that CbpA plays a measurable role in pathogenesis of systemic disease. This is consistent with the finding that this protein is an adhesin for cytokine-activated epithelial and endothelial cells (39). The apparent involvement of CbpA in nasopharyngeal colonization also prompted us to examine the virulence of the various mutants in an intranasal challenge model. One would predict that cbpA mutations would have a more significant impact on virulence in models such as this, which require the pneumococcus to penetrate the respiratory mucosa. However, these studies yielded findings analogous to those obtained with the i.p. challenge model; CbpA− had virulence similar to that of D39, but Δply-CbpA− was significantly less virulent than either Δply or CbpA−.

The additive attenuation of virulence observed by mutagenizing ply as well as either pspa, hyl, or cbpA indicates that Ply and the other virulence proteins have independent functions in the pathogenesis of systemic pneumococcal disease. It follows from this that if the biological functions of these proteins can be blocked by antibody, then immunization with combinations of Ply and either Hyl, PspA, or CbpA might provide a higher degree of protection against S. pneumoniae than immunization with Ply alone. Ply has previously been shown to provide a significant degree of protection against multiple serotypes of S. pneumoniae (1). This protection is presumably due to neutralization of free toxin released from the pneumococcus by autolysis, and anti-Ply antibodies would not be expected to promote opsonophagocytic clearance. In contrast, antibodies directed against surface proteins might be expected to result in opsonization if they are not obscured by the polysaccharide capsule. In fresh S. pneumoniae cultures, most of the Hyl activity is cell associated (6), which is consistent with the presence of the gram-positive cell surface anchor domain (LPXTGE) (18) near its C terminus. However, to date we have not been able to demonstrate any protection in a mouse model, using purified Hyl as the immunogen (36). The N-terminal portion of the choline-binding protein PspA has been predicted to have a coiled-coil structure reminiscent of the M proteins of group A streptococci (46), and this might be expected to protrude through the capsule. Although the N-terminal region is highly variable, PspA contains conserved epitopes which elicit antibodies protective against multiple S. pneumoniae serotypes (13, 45). CbpA is structurally similar to PspA; the C-terminal choline-binding domains have >90% amino acid sequence identity, and although there is no sequence similarity, the N-terminal portion of CbpA is also predicted to have a coiled-coil structure (22, 39). Like PspA, the N-terminal region of CbpA is highly variable, and it is not yet known whether this region contains common epitopes capable of eliciting protection against challenge with heterologous S. pneumoniae strains. Notwithstanding this uncertainty, examination of the protective efficacy of immunization with a combination of Ply and either PspA or CbpA is clearly warranted.

ACKNOWLEDGMENT

This work was supported by a grant from the National Health and Medical Research Council of Australia.

REFERENCES

