Are B Lymphocytes of Importance in Severe Staphylococcus aureus Infections?

INGER GJERTSSON,1,4 OLOF HÖRNQUIST HULTGREN,1 MARTIN STENSON,1 RIKARD HOLMDAHL,2 AND ANDRZEJ TARKOWSKI1

Department of Rheumatology, University of Göteborg, Göteborg1 and Section for Medical Inflammation Research, CMB, University of Lund, Lund,2 Sweden

Received 12 October 1999/Returned for modification 6 December 1999/Accepted 25 January 2000

To investigate the role of B cells in experimental, superantigen-mediated Staphylococcus aureus arthritis and sepsis, we used gene-targeted B-cell-deficient mice. The mice were inoculated intravenously with a toxic shock syndrome toxin 1 (TSST-1)-producing S. aureus strain. The B-cell-deficient and thus agamma-globulinemic mice showed striking similarities to the wild-type control animals with respect to the development of arthritis, the mortality rate, and the rate of bacterial clearance. Surprisingly, we found that the levels of gamma interferon in serum were significantly lower (P < 0.0001) in B-cell-deficient mice than in the controls, possibly due to impaired superantigen presentation and a diminished expression of costimulatory molecules. In contrast, the levels of interleukin-4 (IL-4), IL-6, and IL-10 in serum were equal in both groups. Our findings demonstrate that neither mature B cells nor their products significantly contribute to the course of S. aureus-induced septic arthritis.

We have previously described a murine model of hematogenously induced Staphylococcus aureus arthritis and sepsis (7, 8). Using this model, approximately 80 to 90% of mice inoculated with S. aureus LS-1 develop clinical arthritis. Immunohistochemical analysis of arthritic joints demonstrated the presence of phagocytes and T cells, predominantly of the CD4 phenotype (4). The infected mice displayed increased levels of inflammatory cytokines, such as tumor necrosis factor and interleukin-6 (IL-6) in serum (7). We have also shown that toxic shock syndrome toxin 1 (TSST-1), a superantigen produced by S. aureus LS-1, contributes to the arthritogenicity of S. aureus (3, 5). A series of studies using this model suggested that S. aureus arthritis is a T-cell-dependent and superantigen mediated disease.

As to the role of B cells in S. aureus arthritis, we have found that a striking feature in this model is the occurrence of polyclonal B-cells activation with highly increased levels of immunoglobulins and autoantibodies in serum (7). Using X-linked immunodeficiency (xid) mice to investigate the contribution of the B1 subset of B cells to the development of septic arthritis, it was found that this defect provided resistance (21). Since the B1 subset is considered to be of importance in the production of autoantibodies, it was hypothesized that the outcome of the experiment might have been due to this fact.

The aim of this study was to investigate if mature B cells, irrespective of their B1 or B2 phenotype, and their products including cytokines, autoantibodies, and antibodies to bacterial constituents would affect the outcome of S. aureus-induced arthritis and sepsis. We report here that a complete absence of mature B cells has no impact on the outcome of these very severe and life-threatening conditions.

MATERIALS AND METHODS

Mice. Gene-targeted B-cell-deficient μMT mice (C57BL/6 × 129) (11) were backcrossed to B10.Q (H-2b) mice for eight generations and then further intercrossed for two generations to provide homzygous B10.Q mice lacking functional B cells (μMT-BQ) (19). All the offspring were investigated for the presence of serum immunoglobulins (IgM and IgG). The mice were maintained in the animal facility of the Department of Rheumatology, University of Göteborg. Up to 11 mice were kept in each cage, and they were fed standard laboratory chow and water ad libitum. Three independent experiments were performed when the mice were 6, 20, and 24 weeks old.

Bacteria and inoculation. S. aureus LS-1 used in the experiments has been previously described (8). One of the characteristics of this strain is that it produces large amounts of TSST-1, an exotoxin with superantigenic properties (7). The bacteria were cultured on blood agar for 24 h and then re-incubated on blood agar for another 24 h. They were kept frozen at −20°C in phosphate-buffered saline (PBS) (0.13 M sodium chloride, 10 mM sodium phosphate [pH 7.4]) containing 5% bovine serum albumin and 10% dimethyl sulfoxide (DMSO) until use. Before the experiments were started, the bacterial solution was thawed, washed in PBS once, and diluted in PBS to achieve the desired concentration of bacteria. Mice were inoculated in one of the tail veins with 0.2 ml of bacterial solution. One group received a low (suboptimal) arthritogenic dose (1 × 107 mouse), the second group received a moderate (optimal) arthritogenic dose (4 × 108 CFU/mouse) of the bacteria. Viable counts in the leftover solution were determined to ascertain the number of bacteria injected.

Clinical evaluation of arthritis. All the mice were followed up individually, and arthritis was evaluated. The limbs were evaluated by a blinded observer on days 0, 2 to 4, 7, and 10 to 11 after bacterial inoculation. The joints inspected were aseptically removed, ground, and diluted with 10 ml of PBS. Appropriate dilutions were made, and 0.1-ml samples of tissue suspension or blood were plated on agar dishes containing 5% horse blood. Samples for bacteriological examination of joints were obtained using sterilized cotton sticks, after dissection of talocrural and radiocarpal joints, and transferred to 5% horse blood agar.
TABLE 1. Absence of B cells does not affect histopathological progression of *S. aureus* arthritis in wild-type or μMT mice

<table>
<thead>
<tr>
<th>Mouse</th>
<th>Frequency of synovitis (%)</th>
<th>Severity of synovitis a</th>
<th>Severity of bone or cartilage destruction</th>
<th>Frequency of pannus (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>μMT (n = 11)</td>
<td>91</td>
<td>4.5 ± 1.6</td>
<td>4.4 ± 2.3</td>
<td>36</td>
</tr>
<tr>
<td>Wild type (n = 11)</td>
<td>91</td>
<td>3.4 ± 0.7</td>
<td>2.7 ± 1.1</td>
<td>27</td>
</tr>
</tbody>
</table>

a In all cases, the differences between μMT and wild-type mice are not statistically significant.

b For a definition of the numbers used to indicate severity, see the text.

After incubation for 48 h the colonies were counted and the results were expressed as the number of CFU per milliliter blood or per whole organ.

Serological analyses. (i) Immunoglobulins. Levels of IgG and IgM in serum were measured by radial immunodiffusion (12). Antiserum and Ig were purchased from Sigma Chemical Co. (St. Louis, Mo.).

(ii) IL-6 assay. Cell line B13.29, subclone B9, which is dependent on IL-6 for its growth, was used for IL-6 determinations (1, 10). B9 cells were harvested from tissue culture flasks, seeded into microtiter plates (Nunc, Roskilde, Denmark) at 5,000 cells/well, and cultured in Iscove’s medium supplemented with 5 × 10⁻⁵ M 2-methoxyethanol, 5% fetal calf serum (Integro B.V., Leuvenhein, The Netherlands), and 50 μg of gentamicin per ml and serum samples were added. [³H]thymidine was added after 68 h of culturing, and the cells were harvested 4 h later. The samples were tested in twofold dilutions and compared with a recombinant mouse IL-6 standard (Genzyme, Cambridge, Mass.) (6). B9 cells were previously shown not to react with several recombinant cytokines, including IL-1α, IL-1β, IL-2, IL-3, IL-5, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor, and gamma interferon (IFN-γ). There was only a weak reactivity with IL-4 (10).

(iii) IFN-γ assay. Levels of IFN-γ were measured by an enzyme-linked immunosorbent assay using 2 μg of purified rat anti-mouse IFN-γ monoclonal antibody (PharMingen, San Diego, Calif.) per ml in sodium bicarbonate (pH 9.6) for coating. All sera were serially diluted in Tris-NaCl and incubated in wells. Biotinylated rat anti-mouse IFN-γ monoclonal antibody (2 μg/ml) (PharMingen) was added to measure the level of IFN-γ bound to the solid phase. This procedure was followed by stepwise addition of streptavidin alkaline phosphatase (R&D Systems) and the enzyme substrate was then added, and the absorbance was measured in a SpectraMax PLUS photometer (Molecular Devices) at 405 nm. The samples were tested in twofold dilutions and compared with a recombinant mouse IFN-γ standard (Genzyme).

(iv) IL-4 and IL-10 assay. Kits for detection of these cytokines were purchased from R&D Systems. Detection limits in our assays were 47 pg/ml and 2 pg/ml, respectively.

Statistical analysis. The mortality rate and the frequency of arthritis were analyzed using the χ² test with Yates’ correction. All the remaining parameters were analyzed by the Mann-Whitney U test. All data are expressed as means ± standard errors of the means unless otherwise indicated.

RESULTS

B lymphocytes do not affect the course of *S. aureus* arthritis or sepsis. The clinical outcome of arthritis varied among the three experiments due to inoculation of different numbers of bacteria. However, no statistically significant differences with respect to arthritis between the μMT and the wild-type mice were observed in any of the experiments. In the experiment where the mice were inoculated with an optimal arthritogenic dose of bacteria (4 × 10⁷/mouse), 70% of the μMT mice (n = 10) developed arthritis by day 7 whereas the corresponding rate for their littermate controls (n = 11) was 81%. The mice in the low-dose experiment (1 × 10⁶/mouse) had a lower frequency of arthritis: on day 7, 36% of the μMT mice (n = 11) had developed arthritis and 27% of the wild-type controls had done so. In the sepsis experiment, the mice were inoculated with a high dose of bacteria (1 × 10⁹ CFU/mouse); 86% of the μMT mice (n = 11) and 60% of the controls (n = 7) developed arthritis by day 4. Also, the severity of arthritis was similar between μMT and wild-type controls in all three experiments (data not shown). The clinical observations were confirmed by histopathological analysis of joints (Table 1).

No deaths were recorded as a result of inoculation with the arthriticogenic and subarthriticogenic doses of bacteria (1 × 10⁷ and 4 × 10⁷, respectively). Inoculation of B-cell-deficient mice with a septic dose (1 × 10⁹) of *S. aureus* resulted in a somewhat increased mortality compared to that of wild-type controls (45% [5 of 11] and 13% [1 of 7], respectively). However, these data did not reach statistical significance. Furthermore, the general condition of the mice as measured by weight gain or loss showed no differences between the groups (data not shown).

B cells do not influence the elimination of *S. aureus* in vivo. To assess the elimination of *S. aureus* during infection, bacterial counts in blood were measured after 18 h and 3 days. In addition, bacterial counts in the kidneys, liver, and joints were measured at the time of sacrifice. There were no significant differences between the mice, irrespective of their B-cell status, in any of the experiments (Fig. 1). The shorter life span of the mice in the septic-dose experiment explains the lower bacterial burden.

Decreased production of IFN-γ in response to *S. aureus* infection in B-cell-deficient mice. To further study the cellular basis of responses to *S. aureus*, levels of cytokines in serum were determined. As shown in Fig. 2, there was a striking reduction of IFN-γ levels in the μMT mice following infection with *S. aureus*. No differences in the levels of IL-4, IL-6, and IL-10 were found (Table 2).

FIG. 1. B-cell deficiency does not influence bacterial clearance in the kidneys. In the low-dose (1 × 10⁷ bacteria/mouse) experiment, μMT (n = 11) and wild-type (n = 11) mice were sacrificed on day 14; in the moderate-dose (4 × 10⁹ bacteria/mouse) experiment, μMT (n = 11) and wild-type (n = 10) mice were sacrificed on day 11; and, finally, in the septic-dose experiment (1 × 10⁹ bacteria/mouse), the μMT (n = 6) and wild-type (n = 6) mice were sacrificed on day 7.

FIG. 2. Levels of IFN-γ in serum are significantly reduced in the B10.Q (H-2b) μMT mice compared to the wild-type controls. The levels were measured in the moderate-dose (4 × 10⁹ bacteria/mouse) experiment on days 2, 7, and 11.
of autoantibody production, it may be hypothesized that dele-
sioned with poor antibody responses (21). The xid mice have
tion of IL-1β and IL-6 and increased synthesis of IFN-γ com-
bined with poor antibody responses (21). The xid mice have
relatively few functional B cells of the B2 subset and have no
B1 cells. Since the B1 subset of B cells is an important source
of autoantibody production, it may be hypothesized that dele-
tion of this population might have had a beneficial impact on
the outcome of S. aureus arthritis, a disease characterized by
the production of high levels of rheumatoid factors, collagen II
antibodies, and anti-DNA antibodies (7). In contrast, the B2
subset of B cells has the capacity to produce antibodies to
extrinsic molecules, e.g., bacterial antigens. These antibodies
might, at least under certain circumstances, be important in
the defense against S. aureus, since the IFN-γ is a cytokine whose
secretion is readily triggered by TSST-1 (22). Finally, it has recently
been shown that clonal expansion of superantigen-reactive T cells
is diminished in μMT mice compared to intact controls (20).

This study demonstrates that a complete absence of func-
tional B cells in the μMT mice affects neither susceptibility to
nor outcome of S. aureus-induced septic arthritis and sepsis-
related mortality. In addition, B cells do not influence the rate
of in vivo elimination of staphylococci.

We have previously shown that mice with X-linked immu-
nodeficiency (xid mice) are less susceptible to septic arthritis
than are their congenic controls, probably because of a
deficiency (xid mice) are less susceptible to septic arthritis
and IL-10 and increased synthesis of IFN-γ during the induction
phase of 2,6-trinitrobenzene sulfonic acid (TNBS)-
induced colitis (18). In addition, stimulation with a CD40L
agonist enhanced IFN-γ production by human peripheral
blood mononuclear cells (14).

Our findings showing deficient production of IFN-γ are con-
ﬁrmed by the results of Matsuzaki et al. (13) and may be
explained by a diminished number of major histocompatibility
complex class II molecules, CD40, B7-1, and B7-2 molecules,
and thereby an impaired T-cell priming. In addition, the
decreased number of class II-expressing cells due to lack of the
B-cell population might have affected the superantigenic
responses, since the IFN-γ is a cytokine whose secretion is
readily triggered by TSST-1 (22). Finally, it has recently
been shown that clonal expansion of superantigen-reactive T cells
is diminished in μMT mice compared to intact controls (20).

This study demonstrates that the clinical and histopatholog-
ic outcome of septic arthritis and sepsis-related mortality in
response to intravenously inoculated S. aureus is identical in
B-cell-deﬁcient mice and their congenic controls. Interest-
ingly, signiﬁcantly decreased IFN-γ levels and absence of Ig
production in the μMT mice did not affect the in vivo clear-
ance of bacteria.

ACNOWLEDGMENTS

We thank Lena Svensson and Margareta Verdreng for excellent
technical assistance.

This work was supported by the Göteborg Medical Society, the
Swedish Association against Rheumatism, the King Gustaf V.
Foundation, the Swedish Medical Research Council, Inflammation
Network, Infection and Vaccinology Network, the Nanna Swartz
Foundation, the AME Wolf Foundation, and the University of Göteborg.

REFERENCES

Production of hybridoma growth factor by human monocytes. Eur. J.
Immunol. 17:1411–1416.

The accessory gene regulator (agr) controls Staphylococcus aureus virulence

expansion of T lymphocytes causes arthritis and mortality in mice infected
24:1161–1166.

Table 2. Levels of cytokines in serum following S. aureus infection in B-cell-deficient (μMT) and wild-type congenic mice

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Level of cytokine (mean ± SEM) at days after inoculation:</th>
<th>Level of cytokine (mean ± SEM) at days after inoculation:</th>
<th>Level of cytokine (mean ± SEM) at days after inoculation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μMT</td>
<td>Wild type</td>
<td>μMT</td>
</tr>
<tr>
<td>IL-4</td>
<td>62 ± 15</td>
<td>47 ± 0<sup>a</sup></td>
<td>49 ± 2</td>
</tr>
<tr>
<td>IL-6</td>
<td>2,962 ± 908</td>
<td>1,544 ± 43<sup>b</sup></td>
<td>ND<sup>c</sup></td>
</tr>
<tr>
<td>IL-10</td>
<td>5 ± 1</td>
<td>5 ± 1<sup>d</sup></td>
<td>4.0 ± 0</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>166 ± 79</td>
<td>1,107 ± 172<sup>c</sup></td>
<td>ND</td>
</tr>
</tbody>
</table>

^a Levels of IL-4, IL-6, and IL-10 are expressed in picograms per milliliter. Levels of IFN-γ are expressed in units per milliliter.
^b Not statistically significant.
^c P = 0.0003.
^d P = 0.0001.
^e ND, not done.

Editor: E. I. Tuomanen