Structural Analysis and Antibody Response to the Extracellular Glutathione S-Transferases from *Onchocerca volvulus*

ALEXANDRA SOMMER,1 MANFRED NIMTZ,2 HARALD S. CONRADT,2 NORBERT BRATTIG,1 KAY BOETTCHER,3 PETER FISCHER,1 ROLF D. WALTER,1 AND EVA LIEBAU1*  
Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg,1 Gesellschaft für Biotechnologische Forschung mbH, 38124 Braunschweig,2 and LION Bioscience AG, 69120 Heidelberg,3 Germany  
Received 2 March 2001/Returned for modification 11 June 2001/Accepted 23 August 2001

*Onchocerca volvulus* is a human pathogenic filarial parasite which, like other parasitic nematodes, is capable of surviving in an immunologically competent host by employing a variety of immune evasion strategies and defense mechanisms including the detoxification and repair mechanisms of the glutathione S-transferases (GSTs). In this study we analyzed the glycosylation pattern and the immunological properties of extracellular *O. volvulus* GST1a and -1b (OvGST1a and -1b). The enzymes differ in only 10 amino acids, and both are glycoproteins that have cleavable signal peptides and unusual N-terminal extensions. These characteristics have not been described for other GSTs so far. Mass spectrometry analyses indicate that both enzymes carry high-mannose type oligosaccharides on at least four glycosylation sites. Glycosylation sites 1 to 3 of OvGST1a (OvGST1b sites 2 to 4) are occupied by truncated N-glycans (Man4GlcNAc2 to Man9GlcNAc2), and N glycosylation site 4 of OvGST1a (OvGST1b site 5) carries Man4GlcNAc2 to Man9GlcNAc2. To analyze the capacity of these secretory GSTs to stimulate host immune responses, we studied the antibody responses of onchocerciasis patients against the native affinity-purified OvGST1a and -1b. By enzyme-linked immunosorbent assay we showed that OvGST1a and -1b are immunodominant antigens, with less than 7% nonresponder patients. A direct comparison of the antibody responses to the glycosylated and deglycosylated forms demonstrates the high immunogenicity of the N-glycans. Analyses of the antibody responses to the unusual N-terminal extension show an enhanced recognition of this portion by patients as opposed to recognition of the recombinant protein without extension.

"Onchocerca volvulus" is the causative agent of onchocerciasis, a disease that affects about 20 million people in Africa, the Arabian Peninsula, and Central and South America. The control of this disease is largely dependent on administration of annual doses of ivermectin, a drug that is able to kill the microfilariae but not the adult worms (22).

The spectrum of *O. volvulus* infection varies from asymptomatic microfilariderma often associated with immunological hyporesponsiveness to severe skin and eye diseases including onchodermatitis and blindness. Establishment of infection and disease development are dependent on the specific antigen recognition and immune response of the host. The complex immune response is triggered by numerous different filarial antigens at the same time. To elucidate the mechanism of the immune response, it is essential to explore the specific reactions to individual, native parasite antigens.

The glutathione S-transferases (GSTs) are a family of detoxification enzymes that catalyze the conjugation of reduced glutathione (GSH) to xenobiotic and endogenous electrophilic compounds (25, 49, 55, 56). Besides having a role in detoxification, they are involved in the protection of tissues against oxidative damage and in the intracellular transport of hydrophobic substrates as noncatalytic carrier proteins (ligandins) (for recent reviews see references 14, 26, and 52). In a parasitic context it is especially important to consider their function in the regulation of the stress response, in the detoxification of lipid peroxidation products, in drug resistance, and possibly in the modulation of the host immune defense mechanisms (8, 16, 42).

Several studies demonstrate the participation of filarial GSTs in the defense against oxidative stress (34, 35). The potential to protect the parasite against host immunity makes them attractive candidate vaccine antigens (11). The significant differences between the tertiary structure of the helminth GSTs and that of the host enzymes make the GSTs promising chemotherapeutic targets (9).

From the perspective of antibody reactivity, the most immunogenic filarial antigens that have been identified include paramyosin, tropomyosin, *Ov*ALT-1, SXP1, and chinatin (1, 18, 21, 30). The ease of recombinant production of these and other potential vaccine molecules has made vaccination trials using various animal models possible. However, as a result of this, the role that carbohydrates and other nonprotein determinants play in the immune responses to parasites has been undervalued. However, it is well recognized that most of the immunodominant antigens either are excreted or secreted proteins or are abundant constituents of the nematode surface that are glycosylated (36, 38).

The *O. volvulus* GST1a and -1b (OvGST1a and -1b) are unique GSTs in that they are glycoproteins possessing signal peptides that are cleaved off in the process of producing the mature protein. The mature protein starts with a 25-amino-acid extension not present in other GSTs. The ultrastructural
localization of the secretory OvGST1a and -1b in parts of the cuticle and in the outer lamellae of the hypodermis is consistent with the fact that they are secretory proteins (31). The structures of the N-glycans have been determined, and a three-dimensional model has been created to demonstrate their localization profile. By virtue of the potential significance of OvGST1a and 1b as immunophylactic targets, we have concentrated our efforts on the immunological relevance of the N-glycans and of the uncommon N-terminal extension.

(This work was conducted by A. Sommer in partial fulfillment of the requirements for a PhD from the University of Hamburg, Hamburg, Germany.)

MATERIALS AND METHODS

Parasites, preparation, and purification of native OvGST1a and -1b. Nodules containing O. volvulus female adults were removed from untreated patients with generalized onchocerciasis in Benin, as described previously (2). Nodules excised for research purposes were approved by the Ethics Commission of the Medical Board Hamburg. Adult worms were homogenized on ice with a glass and glass pestle in phosphate-buffered saline (PBS), pH 7.4, containing 0.1 mM phenylmethylsulfonyl fluoride. The homogenate was centrifuged for 1 hour at 100,000 × g, and the native OvGSTs were purified from the supernatant as previously described (32).

Production of recombinant OvGST1a and -1b. The different OvGST constructs were cloned into expression vector pJc20 and transformed in E. coli strain BL21. Expression of recombinant OvGST1a (rOvGST1a) and -1b, followed by purification using GST-Sepharose, was done as previously described (33).

Site-directed mutagenesis. To obtain the mutation of M25 to A25 in OvGST1a, PCR was performed with the specific sense oligonucleotide 5'-GCTACAACCTG 1AGCGGAAAGATGACHTAAAC-3' and antisense oligonucleotide 5'-GTGTTAAAAACCTTGAGGTGTACG-3' using 1:100 (vol/vol) OvGST1a plasmid as the template. Following PCR using Pfu polymerase, the products were incubated with DpnI for 1 hour at 37°C and 1/10 (vol/vol) was transformed in E. coli strain DH5α.

Synthesis of two 17-mer peptides of the N-terminal extension. The following overlapping peptides of the N-terminal extension, coupled to poly-L-lysine, were synthesized at IPF PharmaCeuticals GmbH: (ASSNANQAITSENSIKP)8K7A and (AITSENSIKPKGKLQPQ)8K7A.

Modeling. Model refinement, and structure validation. Three-dimensional models were generated based on the crystal structure of the squid sigma class GST (PDB code: 1G5Q) (19). The primary amino acid sequences of OvGST1a and the squid GST have a similarity of 45%, with 25% identical amino acids. The modeling of the three-dimensional structure of OvGST1a was performed using the standard stepwise procedure, starting with an alignment of the target sequence onto the template structure using the Malign program. Due to the missing N-terminal 25 amino acids in the template, this stretch of amino acids was omitted in the modeling steps. The initial model was generated by the MODELLER4 package (48), and a first energy minimization step was performed using the CHARMM force field (7). Following the superpositioning of the protein structures, refinements were carried out with the AMBER force field (45). Subsequently, the energy minimization was performed with 100 steps of steepest descent followed by 100 steps of a quasi-Newton minimization (46) to alleviate steric clashes between atoms and obtain a rational peptide geometry. The quality of the model was assessed using different validation tools. The OvGST1a structure was validated with the program PROCHECK (29) at each step of the model building. No significant geometric violations were detected in the final model. Molecular visualization was carried out with the programs MOLSCRIPT and Raster3D (41).

Deglycosylation of the native OvGST1a and -1b. The native OvGSTs were dialyzed against 10 mM EDTA–50 mM sodium phosphate, pH 7.5, heated at 80°C for 2 min, and then incubated overnight with the appropriate amount of N-glycosidase F at 37°C.

The endoglycosidase H digestion was performed in 20 mM sodium acetate, pH 5.8, as described above. The deglycosylation of OvGST1a and -1b was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the proteins were revealed by silver staining or by the use of the Glyco-Track kit (Oxford Glycosystems) in accordance with the manufacturer’s instructions.

ELISA. The reactivity of the N-glycans to patient sera was assessed by an enzyme-linked immunosorbent assay (ELISA). The optimal coating concentra-
RESULTS AND DISCUSSION

Comparison of the amino acid sequences of OvGST1a and OvGST1b. The purification of glutathione-binding proteins from O. volvulus extract, produced by centrifugation at 100,000 x g, by GSH affinity chromatography yielded three proteins of roughly 34, 31, and 26 kDa, representing OvGST1b, OvGST1a, and OvGST2, respectively (31, 32). The average content of purified OvGST1a and -1b was 0.5 μg/adult female worm. Only the fractions containing native OvGST1a and -1b were used for further experiments. Figure 1, lane A, demonstrates the purification of native OvGST1a and -1b. Due to the microheterogeneity of the N-glycans, a broader band between 31 and 33 kDa, representing OvGST1a, is seen whereas OvGST1b is seen as the upper, very faint band. Immunoblot analysis using O. volvulus extract and anti-rOvGST1 demonstrates the same staining pattern (31). This strongly indicates that the observed difference in the quantities of OvGST1a and -1b is not due to the purification procedures, i.e., different affinities for binding to GSH-Sepharose, but rather reflects the situation in the worm.

To unequivocally demonstrate the presence of two different isoforms of OvGST1, the affinity-purified native OvGSTs were tryptically digested and analyzed by HPLC-MS for the abundances of two theoretical cleavage products (A and B) of OvGST1a and OvGST1b, differing only in one amino acid (A: 99FGLLGTND[A]WEEAK111; B: 112IMAVVLNID[E]ELFKQ125, amino acid of OvGST1b is in brackets). The identity of the expected peptide fragments was demonstrated by ESI-MS/MS peptide sequencing of the respective fractions collected from the preparative HPLC run (data not shown). The ratio between OvGST1a and -1b found by this method was approximately 7:1.

Nucleotide differences found in the respective cDNAs for OvGST1a and -1b result in 10 structural changes (Fig. 2). Southern blot and sequence analyses demonstrate that OvGST1a and -1b are encoded by separate genes. The observed nucleotide differences are confirmed by sequence analysis of the respective genomic copy (E. Liebau et al., unpublished results). These amino acid differences are found mainly in the N-terminal region of the mature protein, with 4 out of 10 amino acid changes located in the N-terminal extension. The replacement of polar residues with more-hydrophilic, charged residues

![FIG. 1. Purification and deglycosylation of native OvGST1a and -1b. The proteins were separated on an SDS–12.5% PAGE gel. Lane A, OvGST1a and OvGST1b at 31 to 33 and about 34 kDa, respectively. The relatively broad bands can be explained by N-glycan microheterogeneity. For comparison, rOvGST1a raised in E. coli was also applied (lane B). Lane C, completely deglycosylated proteins after N-glycosidase F treatment; lane D, digestion with endoglycosidase H, leaving a single GlcNAc residue at each glycosylation site in place. Left, migration positions of molecular mass standard proteins.](http://iai.asm.org/)

![FIG. 2. Alignment of the amino acid sequences of OvGST1a and OvGST1b. The signal peptide, comprising 25 amino acids, is indicated. Arrows, cleavage site, N-terminal extension, and tryptic cleavage sites. The numbering of the respective amino acids begins at position 1 (in boldface), which corresponds to the signal peptide cleavage site of the mature protein. The numbers above the sequences correspond to the tryptic fragments shown in Table 1. The differences between OvGST1a and -1b are in boldface.](http://iai.asm.org/)
changes the character of the N-terminal extension of OvGST1b from a neutral one to a more hydrophilic one.

**Isolation and characterization of N-linked oligosaccharides.** As previously shown (31), the native enzymes are extensively glycosylated. The glycosylation accounts for approximately 13 and 20% (OvGST1a and OvGST1b, respectively) of their apparent masses (Fig. 1, lane A). For comparison the nonglycosylated protein expressed in *E. coli* (Fig. 1, lane B) as well as the fully deglycosylated peptide backbone after N-glycanase F treatment (Fig. 1, lane C) were run on the same SDS-PAGE gel. To characterize the glycan structure of the purified native proteins, OvGST1a and -1b were subjected to tryptic digestion. All OvGST1a peptides bearing a glycosylation site were identified by the characteristic pattern of molecular ions due to the attachment of different glycans (as shown for glycopeptide 1 and 4 in Fig. 4). On account of the small quantity of OvGST1b peptides, only two specific glycopeptides of OvGST1b were identified. Glycopeptide 1, consisting of amino acids 4 to 18, is identical to peptide 1 of OvGST1a. Glycopeptide 2, consisting of amino acids 13 to 18, is identical to peptide 2 of OvGST1a. The glycopeptides 1 and 2 are only two specific glycopeptides of OvGST1a and -1b observed, while the tryptic peptides of OvGST1a and -1b were further peaks not detected in the HPLC-MS analysis (Fig. 3 and Table 1). All calculated tryptic peptides were identified by ESI-MS analysis (Fig. 3; Table 1); further peaks correspond to nonpeptide contaminants as well as to tryptic fragments. Most of the nonglycosylated tryptic peptides were identified; peptides <400 Da, however, were not detected in the HPLC-MS analysis (Fig. 3 and Table 1). All OvGST1a peptides bearing a glycosylation site were identified by the characteristic pattern of molecular ions due to the attachment of different glycans (as shown for glycopeptide 1 and 4 in Fig. 4). On account of the small quantity of OvGST1b and the minute differences between both proteins observed, only two specific glycopeptides of OvGST1b were identified. Glycopeptide 1, consisting of amino acids 4 to 18 (GP14–18) of OvGST1b, could not be detected and analyzed (Table 1). On all four glycosylation sites of OvGST1a, molecular ions with mass increments of 162 Da were detected, suggesting the presence of high-mannose type structures differing

### Table 1. Molecular weights of the tryptic fragments of OvGST1a and -1b analyzed by HPLC-MS

<table>
<thead>
<tr>
<th>Tryptic peptide</th>
<th>HPLC peak no.</th>
<th>Amino acid position in the mature protein</th>
<th>OvGST1a</th>
<th>OvGST1b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calculated peptide mass (Da)</td>
<td>Detected peptide signal ([M + nH]^+)</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1–18</td>
<td>1,858.0</td>
<td>930.5</td>
</tr>
<tr>
<td>1a</td>
<td>1</td>
<td>1–3</td>
<td>304.18</td>
<td>n.d.</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>19–20</td>
<td>2,903.84</td>
<td>n.d.</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>21–27</td>
<td>757.15</td>
<td>n.d.</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>28–36</td>
<td>900.45</td>
<td>n.d.</td>
</tr>
<tr>
<td>5</td>
<td>37–38</td>
<td>251.1</td>
<td>275.15</td>
<td>n.d.</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>39–43</td>
<td>2,139.7</td>
<td>n.d.</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>44–57</td>
<td>1,022.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>8</td>
<td>58–60</td>
<td>388.24</td>
<td>1,426.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>61–64</td>
<td>1,645.8</td>
<td>n.d.</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>65–98</td>
<td>1,859.0</td>
<td>n.d.</td>
</tr>
<tr>
<td>10a</td>
<td>1</td>
<td>65–69</td>
<td>2,031.5</td>
<td>n.d.</td>
</tr>
<tr>
<td>10b</td>
<td>15 (Mox.)</td>
<td>70–98</td>
<td>2,031.5</td>
<td>n.d.</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>99–111</td>
<td>1,434.7</td>
<td>718.3</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>112–125</td>
<td>1,645.9</td>
<td>823.9</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>126–133</td>
<td>1,202.6</td>
<td>n.d.</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>2,683.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>138</td>
<td>2,680.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>141–143</td>
<td>2,680.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td>144–156</td>
<td>2,680.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>157–159</td>
<td>2,680.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>160–162</td>
<td>2,680.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>163–173</td>
<td>2,680.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>21</td>
<td>18</td>
<td>174–193</td>
<td>2,680.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>22</td>
<td>12</td>
<td>194–206</td>
<td>2,680.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>23</td>
<td>7</td>
<td>207–214</td>
<td>2,680.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>215–218</td>
<td>2,680.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>25</td>
<td>21</td>
<td>219</td>
<td>2,680.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>220–222</td>
<td>2,680.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>27</td>
<td>10</td>
<td>223–225</td>
<td>2,680.4</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

* Monoisotopic theoretical masses and masses deduced from multiply charged ions ([M + nH]^+) detected by ESI-MS are given.

* The tryptic peptide numbering corresponds to that in Fig. 2. For better assignment, the amino acid positions of the tryptic fragments are also given. OvGST1a- and -1b-specific cleavage sites, are indicated by “a” and “b”.

* Glycopeptide. The associated masses are those of the peptide and its major glycan, MannGlcNAc2.

* Incomplete tryptic digestion.

* n.d., not detected; peptides with masses of <400 Da were not detected by the mass spectrometer.

* Mox., oxidized methionine.
in the number of mannose residues attached, as shown in Fig. 4 for GP144–57 and GP4144–156. The assignment and the ratios of the glycan structures found at individual glycosylation sites of OvGST1a are as follows: for GP144–57, Man5/Man4/Man3 ratio/H11005 1:0.32:0.1; for GP270–98, Man5/Man4/Man3 ratio = 1:0.51:0.07; for GP2134–137, Man5/Man4/Man3 ratio = 1:0.13:0.07; for GP4144–156, Man5/Man4/Man3 ratio = 1:0.48:0.15:0.1:0.05:0.04:0.01. This demonstrates that Man5GlcNAc2 is the dominant glycoform present at all four glycosylation sites of OvGST1a. Besides identifying this glycoform as dominant, the analysis revealed that about 30% of the N-glycans found are smaller (Man3 and Man4) than those described for mammals. Interestingly, whereas the structures of Man2GlcNAc2 to Man5GlcNAc2 and the relative ratios of oligosaccharides linked to glycosylation sites 1 (N50), 2 (N79), and 3 (N134) appear to be rather similar, at glycosylation site 4 (N144) clearly larger structures, bearing Man5GlcNAc2 to Man9GlcNAc2, were detected. For further characterization of the (glyco)peptides, individual fractions from another HPLC run were collected and the amino acid sequences of all glycopeptides were confirmed by Edman sequencing. Additionally, the MALDI-TOF MS spectrum shows the protonated molecular ions of tryptic GP144–57 bearing two to five mannose residues (Fig. 4). Small amounts of a tryptic peptide with one missing cleavage site incorporating glycosylation site 4 (N144) were detected; this peptide bears high-mannose type glycans (Man5 to Man9) much larger than those found for the first glycosylation site (Fig. 4). This confirms the HPLC and ESI-MS/MS results for this site obtained for the completely digested GP4144–156. The major components of the collected HPLC fractions were further characterized by ESI-MS/MS experiments. The daughter ion spectrum of doubly charged GP4144–156 showed an abundance of fragment ions generated by the cleavage of monosaccharide bonds, as is explained in the fragmentation scheme of Fig. 5. In particular, the successive elimination of five hexose residues indicates the presence of a high-mannose type glycans. Peptide sequence-specific fragments from the amino and carboxy termini were much weaker but nevertheless allowed the confirmation of the peptide sequence. The other major glycopeptides were characterized in an analogous way.

The helminth’s surface and excreted or secreted antigens represent the major challenge to the host’s immune system and may be a key to the successful defense strategies of the parasite. Immunodominant epitopes are often accessible to periodate oxidation and/or are susceptible to peptide N-glycosidase F digestion. Numerous lectin binding studies confirm the prevalence of saccharide determinants on the parasite surface.

<table>
<thead>
<tr>
<th>peak no.</th>
<th>tryptic peptide (aa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>39–43; 65–69</td>
<td>6</td>
<td>126–137*</td>
<td>11</td>
<td>28–36</td>
<td>16</td>
<td>70–98*</td>
</tr>
<tr>
<td>4</td>
<td>215–218</td>
<td>9</td>
<td>139–143</td>
<td>14</td>
<td>112–125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1–18</td>
<td>10</td>
<td>223–225</td>
<td>15</td>
<td>70–98* (Mox.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 3. Tryptic peptide mapping of the native OvGST1a and OvGST1b. The protein preparation was digested with trypsin as described in Materials and Methods. Tryptic fragments were separated by microbore HPLC, and each distinct peak was subjected to amino acid sequence analysis. For the identification of glycosylated peptides, aliquots from the fractions (asterisks) were separately analyzed for sugar constituents. Mox., oxidized methionine; RT, retention time.
However, only a few helminth carbohydrates have actually been structurally defined (13, 37).

The oligomannosyl structures that we found for OvGST1a and -1b are common features in nematodes, as are truncated glycans with one or two additional mannoses attached to the chitobiose core (13). Structural analysis of N-glycans of whole-worm extract from the filarial parasite Acanthocheilonema viteae displays high levels of N-glycans that contain phospho-

FIG. 4. Upper mass range of the MALDI-TOF spectrum of HPLC fraction 13 (compare Fig. 3) isolated by reverse-phase HPLC from OvGST1a following tryptic digestion. The peptide containing glycosylation site 1 (N50) (left site) bears truncated mannose type glycans with two to five mannose residues (M2 to M5), whereas the peptide with one missing cleavage site and containing glycosylation site 4 (N144) (right site) bears high-mannose glycans with five to eight mannose residues. From the dominant component at m/z 2841.7, a daughter ion spectrum was obtained by ESI-MS/MS as depicted in Fig. 5.

FIG. 5. ESI daughter ion spectrum of doubly charged GP1 with five mannose residues. The major doubly charged fragment ions are due to the elimination of one to five mannose residues. Complementary glycans obtained by the cleavage of the chitobiose core and the subsequent loss of the mannose residues were obtained as indicated in the fragmentation scheme. Peptide-specific fragments incorporating the carboxy-terminal (yn) or amino-terminal (bn) amino acids are marked in the spectrum. GN, N-acetylglucosamine; M, mannose.
rycholine (PC). These PC-glycans are also found in glycoproteins that are secreted by adult filarial parasites during parasitism in their final host. The PC component has been shown to interfere with key signal transducers implicated in cellular activation and proliferation and represents a novel target for chemotherapy (12). The N-glycans usually have trimannosyl cores that have one to four N-acetylgalactosamine residues added and that either were or were not fucosylated. Besides the PC-glycans, a second family of N-glycans that are remarkably rich in GlcNAc have been found in filarial nematodes (17). Furthermore, complex and hybrid structures are also major constituents. These may have antennae that are truncated to a single GlcNAc, as was observed for Dirofilaria immitis, or nontruncated antennae that commonly have a backbone composed of lactoNac (GalNAcβ1-4GlcNAc) (24).

Although there still is no specific identification of a particular helminth glycoconjugate in mediating a specific host response, glycoconjugates are being increasingly implicated in the immune responses to parasites. Here they can be key modulators or targets of the host immune systems, and often the immunodominant epitopes are glycans of unique structures (13).

Homology modeling of OvGST1. Alignment of OvGST1a and -1b with GSTs from various classes demonstrates the relationship to the sigma class enzymes, particularly the hemato poetic prostaglandin D synthase from rats (23), one of the products of the GST gene families in the housefly Musca domestica that is involved in pesticide resistance (57), the S-crystallins constituting the major lens proteins in squids (54), and the GSTs isolated from squid digestive glands (19).

To analyze the localization of the N-glycans, a three-dimensional model of OvGST1a was prepared based on the X-ray crystallography data of the sigma class GST from squids (1GSQ) (Fig. 6). An alignment obtained with the program Blast2, version 2.1.1 (August 2000) indicates an overall similarity of 45%, a sequence identity of 25%, and only four gaps (2%). There are no large deviations from the empirical values; the OvGST1 model compares favorably with the structure of the squid GST. Due to the missing homology to the N-terminal extension, the model begins at position Q22. The overall topology of the OvGST1 monomer is similar to the typical GST structure and, as described for the squid sigma class GST, Ov1 is arranged in a smaller α/β domain (domain I) and a larger α domain (domain II). Domain I encompasses the first one-third of the enzyme and is built up in a βαβαβα structural motif that forms a mixed four-strand β sheet in the order of 4-3-1-2, with strand 3 antiparallel to the other three sheets. The overall fold of domain I is classified as being part of the thioredoxin superfAMILY fold (4, 39) and contains the principal determinants for GSH binding. Domain II of the protein is composed of five α-helices (α4 to α8) (Fig. 6). While domain I is mainly responsible for GSH binding, domain II provides the primary structural elements associated with the second substrate specificity (49).

The other known Ov-GST with glutathione-binding capacity (OvGST2) shows a strong topological relationship with the pi class GSTs (34). However, in OvGST2, the C-terminal coil lies to one side of the active site. This coil normally forms the back face of the hydrophobic substrate binding pocket, and its displacement results in a “tunnel-like” hole (34). Direct comparison of the active sites of OvGST1 and OvGST2 shows that that of OvGST1 is more flattened, resulting in a wider and shallower cleft. This probably reflects the observed differences in the substrate specificities, with OvGST1 preferring bulky aromatic substrates.

The most striking difference between OvGST1 and other described GSTs is the N glycosylation. Four N-linked glycosylation sites were located at positions N50, N79, N134, and N144, corresponding to GP144–57, GP2_70–98, GP3_134–137, and GP4_144–156 of OvGST1a, respectively (Fig. 6). For OvGST1b an additional glycosylation site is located in the N-terminal extension (N6). Glycosylation site 1 (OvGST1b: glycosylation site 2) is found in a loop following α-helix 1, glycosylation site 2 (OvGST1b: glycosylation site 3) is located in the β-sheet 3, and glycosylation site 3 (OvGST1b: glycosylation site 4) lies in a loop made out of five amino acids between α-helix 4 and α-helix 5. Finally, glycosylation site 4 (OvGST1b: glycosylation site 5) is located in α-helix 5 near a small loop region made out of two residues (E147 and S148) (Fig. 6). This demonstrates that the N-glycans cover, more or less, the entire enzyme. An additional binding site for nonsubstrate ligands and their glutathione conjugates was observed in the region of the crystallographic twofold axis, incorporating the α4-turn-α5 motifs of the two subunits in the sigma class GST from squid digestive glands (20). In the 26-kDa GST from Schistosoma japonicum, a third binding site for the antischistosomal drug praziquantel has been found near the dimer interface (40). The binding regions of the nonsubstrate binding sites of OvGST1a and -1b appear to be shielded by the N-glycans of glycosylation site 3 (N134), as well as by the large carbohydrate moieties of glycosylation site 4 (N144).

No difference in the binding of the glycosylated enzymes and that of the deglycosylated enzymes to the immobilized glutathione was observed by affinity chromatography, indicating that the N-glycans do not interfere with the GSH-binding site. Furthermore, no variance in substrate conjugation capacity between the glycosylated and deglycosylated forms was observed, demonstrating that the N-glycans do not interfere with the active site and have no measurable influence on the enzymatic activity. Comparison of the conjugation capacity of the recombinant OvGST1a plus N-terminal extension and that of the shortened form (without N-terminal extension) using universal substrate 1-chloro-2,4-dinitrobenzene (CDNB) shows no difference in the activities (data not shown). This, however, was expected, due to the topological distance between the active site and extension.

Influence of N glycosylation on the recognition of OvGST1a and -1b by patient sera. To analyze the influence of the partially truncated N-glycans on the recognition of OvGST1a and -1b by the immune system of the host, 29 sera of patients with generalized onchocerciasis were tested by ELISA (Fig. 7). For the deglycosylation, the native OvGST1a and -1b were treated with N-glycanase F (Fig. 1, lanes A and C). Deglycosylation was additionally performed using endoglycosidase H (Fig. 1, lane D). This experiment was necessary to analyze the influence of the altered charge due to the replacement of amino acid N with D, caused by treatment with N-glycosidase F. The IgG antibody response to endoglycosidase H-deglycosylated OvGST1a and -1b was similar to the antibody responses measured following N-glycosidase F treatment. Furthermore, com-
parative ELISA with native \( Ov \)\textsubscript{GST}1a and -1b with and without reheating and overnight incubation at 37°C was performed to exclude the influence of this pretreatment in the following ELISA measurements. Serological responses to native glycosylated and deglycosylated \( Ov \)\textsubscript{GST}1a and -1b are indicated in Fig. 7. Levels of \( Ov \)\textsubscript{GST}1a- and -1b-specific antibodies of non-infected individuals were analyzed using five European and four African control sera. In these sera, there was no recognition of the glycosylated and deglycosylated forms. The OD\textsubscript{450} cutoff of 0.18 can probably be attributed to conserved GST epitopes. The OD\textsubscript{450} values representing the IgG antibody responses to the \( Ov \)\textsubscript{GST}s are significantly higher (paired test; \( P < 0.05 \)) for the native glycosylated form, i.e., the native structure that is found in the living parasite (median OD\textsubscript{450} = 0.66 [10th and 90th percentiles, 0.32 and 0.79, respectively]), than for the deglycosylated form (median OD\textsubscript{450} = 0.36 [10th and 90th percentiles, 0.19 and 0.58]) (Fig. 7). Using \textit{E. coli}-expressed r\( Ov \)-\textsubscript{GST}1a instead of the deglycosylated protein also led to lower IgG responses than those for the native protein (data not shown). Out of the 29 onchocerciasis patient sera tested, 2 sera did not recognize the enzymes and 2 others recognized only the glycosylated form of the enzymes.

Epitope mapping of the \textit{S. mansoni} 28-kDa GST identified three major antigenic sites (3). An alignment of \textit{S. mansoni} 28-kDa GST with \( Ov \)\textsubscript{GST}1 reveals that three out of the four N-glycan sites are located directly in the antigenic regions. The high immunogenicity of the N-glycans of \( Ov \)\textsubscript{GST}1 and their location in homologous sites of confirmed antigenic epitopes indicate that these epitopes are of importance for the antigenicity of \( Ov \)\textsubscript{GST}1. These results indicate that posttranslational modifications of proteins clearly have an important influence with respect to their recognition by the host immune system.

FIG. 6. N-glycosylation sites and the topology of the \( Ov \)\textsubscript{GST}1a monomer. Shown is a ribbon presentation of a three dimensional model of \( Ov \)\textsubscript{GST}1a based on the structure of the squid sigma class GST (PDB code: 1GSQ). α-Helices are red, and β strands are yellow. The N-to-C direction of the structural elements can be deduced by the labeling of the secondary structures. The locations of the N glycosylation sites are orange.
Carbohydrates that are expressed by pathogens may incite several types of innate immune activation. When they are excretory-secretory antigens or are surface associated, they are recognized by antibodies or lymphocytes inducing various kinds of responses. They have been shown to bind to the serum mannose-binding lectin or to the mannose receptor on cells, leading to selective targeting and demonstrating that mannosylation of peptides enhances the innate immune system (10, 51). Moreover it has been shown that carbohydrates on the N-terminal extension of the GST (K18-Q24). Based on this tentative information we analyzed the N-terminal extension of the GST in order to identify the antigenic potency of this Ov-GST1-specific region. To examine the antibody response to the N-terminal extension, 38 sera of patients with generalized onchocerciasis were tested by ELISA. For that purpose, the 27-kDa Ov-GST1a with N terminus (generated by mutating the second translation initiation start point from M25 to A25) was expressed and purified in order to preserve the conformational epitopes of the total protein. For comparison, we also expressed Ov-GST1a without the N terminus. Significantly higher antibody levels \( (P = 0.046) \) were found for Ov-GST1a plus the N terminus (median OD \( 450 = 0.28 \) [10th and 90th percentiles, 0.16 and 0.58, respectively]) than for the N-terminally truncated protein (median OD \( 450 = 0.22 \) [10th and 90th percentiles, 0.17 and 0.35, respectively]). Whereas four of the patient sera did not recognize the 27-kDa Ov-GST1a plus N-terminal extension, nine did not recognize the smaller 24.5-kDa protein. These results show that 34 out of 38 (89.5%) patient sera recognized the recombinant Ov-GST1a plus N-terminal extension as the antigen. From the patient sera that recognized both, i.e., the protein with and without the N-terminal extension, 22 out of 38 sera (58%) showed an enhanced reactivity to the protein with the N-terminal extension.

Reactivity of the N-terminal portion of Ov-GST1a with sera from patients with other helminth infections. All helminth GSTs have some distinct structural elements that lead to cross-reactivity with sera from patients infected with other helminths. For example, antibodies raised against affinity-purified Ov-GSTs react strongly with their Brugia pahangi and Brugia malayi counterparts (47). Ov-GST1a and -1b, however, each have a unique N-terminal extension not found in other GSTs so far. On account of the immunoreactivity observed, we synthesized two overlapping peptides comprising the N-terminal extension of Ov-GST1a and analyzed their cross-reactive properties with sera from patients infected with other helminths (L. loa, B. malayi, W. bancrofti, A. lumbricoides, T. spiralis, and S. mansoni). All of the tested sera showed low IgG responses, with OD \( 450 \) values \( \leq 0.15 \). Twelve out of 20 sera from patients with onchocerciasis showed IgG antibody responses to the N-terminal extension of Ov-GST1a, with OD \( 450 \) values \( > 0.1 \), and 8 of these sera reacted weakly with the two peptides (median OD \( 450 = 0.2 \) [10th and 90th percentiles, 0.052 and 0.86, respectively]; cutoff OD \( 450 = 0.04 \)). None of the sera (serum pools) from patients with filarial infections with L. loa or B. malayi exceeded OD \( 450 \) values of \( > 0.1 \). Two of five serum pools from patients infected with closely related filarial nematode W. bancrofti showed an IgG response to the peptides (OD \( 450 \) values of \( > 0.1 \)). This higher IgG reaction may be due to similar GST antigen epitopes, which might resemble the N-terminal portion of Ov-GST1a. As shown for the lymphatic filariasis-causing nematode B. malayi, three GSTs similar to Ov-GST1 and Ov-GST2 cross-react with anti-Ov-GST rabbit antisera, indicating that B. malayi possesses similar GSTs (47). The investigation of serum pools that were obtained from patients with non-filarial nematode infections demonstrates...
that all four pools from *T. spiralis* infections showed IgG responses <0.1 while one of five pools from *A. lumbricoides*-infected patients showed a higher IgG reaction (OD450 = 0.12) with the N-terminal extension of *Ov*GST1a. This may be due to a hidden or former infection with *O. volvulus*. The serum pools from patients infected with the trematode *S. mansoni* did not react with the N-terminal extension peptides (OD450 values of <0.1).

There is a need to expand our knowledge of the diversity and structure of N-glycans in filarial parasites. Carbohydrate antigens of the parasite are targets of humoral immunity and may play a role in modulating host immune responses. They may provide protective immunity against infection. Furthermore, carbohydrates might play an important role in mediating specific parasite defense or survival strategies by protecting extracellular proteins from proteolytic degradation or by suppressing certain immune responses, host lectin binding, and cell targeting. In the vertebrate host, glycoproteins are recognized by antibodies, mannose-binding proteins, and cellular mannose receptors. This recognition, in turn, represents an effective defense mechanism leading to complement fixation, opsonization, and activation of specific T- and B-cell responses against the parasite. Better understanding of these glycans and the immunity to them might have important implications for the design of immunization protocols in order to induce or enhance protective cell-mediated and humoral immunity in humans. A comparative study of glycosylated and nonglycosylated secretory 20-kDa retinol binding proteins from *O. volvulus* (*Ov*20), *B. malayi* (*Bm*20), and *A. viteae* (*Av*20) revealed three N-linked glycosylation sites for *Ov*20 and *Bm*20 and one different site for *Bm*20, which may reflect functional differences (43). *Ov*20 and *Av*20, in contrast to *Bm*20, were strongly recognized by sera from patients with onchocerciasis but not from patients with lymphatic filariasis. The different glycosylation that was observed in the three different glycoproteins was discussed as being a contribution to the differential immunological reactivities found (43).

The analysis of proteins in their native state has become a prerequisite for a variety of functional and structural studies, including vaccine development. In the nematodocidal vaccines tested so far, the *E. coli*-expressed candidate vaccine antigens confer substantially less protection than their native purified counterparts or no protection (27). The structure and immunological properties of the *E. coli*-expressed antigens differ from those of native worm antigens. The different structures, caused by the missing eucaryotic modifications, result in immune responses which are inefficient for killing the worm. This demonstrates the importance of analyzing posttranslational modifications, such as glycosylation of immunodominant antigens.

**ACKNOWLEDGMENTS**

This project is supported by the Deutsche Forschungsgemeinschaft (DFG projects L793-1-4). P. Fischer was supported by the scholarship program “Infektologie” of the BMBF.

**REFERENCES**


Editor: S. H. E. Kaufmann