Safety and Immunogenicity of Oral Inactivated Whole-Cell Helicobacter pylori Vaccine with Adjuvant among Volunteers with or without Subclinical Infection

KAREN L. KOTLOFF,1,2* MARCELO B. SZTEIN,1,2 STEVEN S. WASSERMAN,2 GENEVIEVE A. LOSONSKY,1,2 SUSAN C. DILORENZO,1 AND RICHARD I. WALKER3†

Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics,1 and Division of Geographic Medicine, Department of Medicine,2 Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, and Antex Biologics, Inc., Gaithersburg,3 Maryland

Received 3 November 2000/Returned for modification 21 December 2000/Accepted 25 February 2001

Helicobacter pylori infection of the gastric mucosa can be found in approximately 50% of the world’s population and is associated with a range of pathology, including peptic ulcer, atrophic gastritis, and gastric cancer. To explore immunization as a strategy for preventing and treating H. pylori-associated disease, we assessed the safety and immunogenicity in healthy adults of a formalin-inactivated, oral H. pylori whole-cell (HWC) vaccine, administered with or without mutant Escherichia coli heat-labile toxin (LT192G) as a mucosal adjuvant. In a dose-response study, 23 subjects with or without H. pylori infection were vaccinated with either 2.5 × 10⁶ HWC, 2.5 × 10⁸ HWC, or 2.5 × 10¹⁰ HWC, plus 25 μg of LT192G. Thereafter, a randomized study was conducted in which 18 H. pylori-infected subjects were assigned, in a double-blind fashion, to receive either 2.5 × 10¹⁰ HWC plus placebo-adjuvant, placebo-vaccine plus 25 μg of LT192G, placebo-vaccine plus placebo-adjuvant, or 2.5 × 10¹⁰ HWC plus 25 μg of LT192G. Diarrhea (six subjects), low-grade fever (five subjects), and vomiting (two subjects) were observed, usually after the first dose. Significant rises in geometric mean mucosal (fecal and salivary) anti-HWC immunoglobulin A antibodies occurred among H. pylori-infected and uninfected subjects following inoculation with 2.5 × 10¹⁰ HWC plus 25 μg of LT192G. Moreover, among H. pylori-negative volunteers, this regimen induced significant lymphoproliferative responses in 5 of 10 subjects and gamma interferon production responses to H. pylori sonicate in 7 of 10 subjects. There was no evidence that vaccination eradicated H. pylori in infected volunteers. These results suggest that it is possible to stimulate mucosal and systemic immune responses in humans to H. pylori antigens by using an HWC vaccine.

Helicobacter pylori infects nearly half of the world’s population, resulting in chronic active gastritis, which persists throughout life unless the organism is eradicated (16, 22). Although most individuals experience no symptoms, 10 to 20% develop peptic ulcer disease (25, 55). Furthermore, chronic H. pylori infection confers a 3- to 12-fold increased risk of developing gastric cancers such as adenocarcinoma and low-grade B-cell lymphoma (6, 23, 28, 51, 52).

Randomized, placebo-controlled trials have demonstrated that eradication of H. pylori infection from the stomach with antimicrobial therapy heals chronic gastritis and peptic ulcers, prevents ulcers from recurring (25, 31, 47, 55) and may lead to regression of gastric lymphoma (50, 65). However, there are impediments to identifying a simple, inexpensive, safe, and effective treatment, including the high cost and side effects associated with standard multidrug regimens (57), the appearance of antibiotic-resistant H. pylori strains (3), and the measurable risk of reinfection following antibiotic-induced eradication (36, 56). For these reasons, the use of vaccines for treatment and prevention of H. pylori infection has been explored.

Preclinical studies have identified a number of promising Helicobacter antigens, including urease (20, 44, 48), VacA (45), CagA (46), heat shock protein (64), neutrophil-activating protein (59), and outer membrane lipoprotein (34). Mucosal administration of inactivated Helicobacter whole-cell (HWC) preparations is another approach that has been extensively explored. A series of independent experiments in animal models has demonstrated that mucosal vaccination with whole-cell preparations of H. pylori confers protection against challenge with wild-type H. pylori or H. felis organisms (11, 21, 44–46; M. Chen, A. Lee, and S. Hazell, Letter, Lancet 339:1120–1121, 1992). Coadministration of a mucosal adjuvant, such as cholera toxin (CT) (11; Chen et al., Letter), CT B subunit (42), the heat-labile enterotoxin (LT) of Escherichia coli (45), and mutant LT K63 (46), has been essential to elicit these protective responses. HWC vaccination has also been explored as a therapeutic strategy (24, 32). For example, administration of either H. felis or H. pylori sonicate plus CT eradicated H. felis infection in mice; 94% of the animals remained cured of their infection for 3 months after vaccination, as detected by histology and local urease activity (15).

Despite the growing body of preclinical data, there have been few clinical trials to determine whether Helicobacter vac-
cines can achieve similar success in humans, and these have thus far involved either recombinant urease (rUrease) or urease expressed by *Salmonella* spp. (1, 14, 49; T. Buclin, M. Cosma, I. Costhery-Theulaz, and P. Michetti, Letter, Lancet 347:1630–1631, 1996). We report here the clinical acceptability and immunogenicity of formalin-inactivated HWC vaccine administered to healthy adults with or without natural subclinical *H. pylori* infection and the effect of coadministered mucosal adjuvant on these responses.

MATERIALS AND METHODS

Vaccine. The formalin-inactivated HWC vaccine used in this study (lot 0290, under commercial development by a subsidiary of Antex Biologics, Inc.) was derived from a frozen stock of a clinical strain (ATCC 55713) that was originally isolated from a human duodenal ulcer biopsy. The parent strain, designated G1-4, is highly motile and expresses CagA, VacA, urease, and catalase. In addition, G1-4 binds to asialo-GM1 (39) but not to other gangliosides (40). The vaccine was prepared at the Walter Reed Army Institute of Research (WRAIR) Forest Glen Annex Facility using Good Manufacturing Practice. In brief, G1-4 was grown to a concentration of 5 × 10^10 bacterial cells per ml in 320 liters of brain heart infusion broth supplemented with bovine calf serum. At the time of harvest, the culture medium was centrifuged, and the bacteria were resuspended in phosphate-buffered saline (PBS), to which formalin was added to a concentration of 0.025 M for 18 h at room temperature. Inactivated cells were then separated by centrifugation and suspended in sterile PBS to achieve a final optical density at 625 nm (OD625) of 3.0 ± 0.2. Vaccine was packaged in 20-dose (20 ml) vials each containing 2.5 × 10^8 or 2.5 × 10^6, the vaccine was diluted with 25 µg of LT_{R192G} adjuvant as part of the randomized safety and immunogenicity study (Table 2) are also included in the analysis of this portion of the study.

Adjuvant. The adjuvant is a modified form of the heat-labile enterotoxin of *E. coli*, designated LT_{R192G}, having a glycine residue substituted for the arginine at position 192 from the amino terminus of the A1 subunit of the molecule (12). LT_{R192G} was expressed by *Escherichia coli* strain Cosma, I. Corthesy-Theulaz, and P. Michetti, Letter, Lancet 347:1630–1631, 1996). We report here the clinical acceptability and immunogenicity of formalin-inactivated HWC vaccine administered to healthy adults with or without natural subclinical *H. pylori* infection and the effect of coadministered mucosal adjuvant on these responses.

Dr. H. pylori infection. A two-stage process was used to determine whether prospective volunteers were infected with *H. pylori*. First, subjects were screened for the presence of serum antibody to *H. pylori* using a commercial ELISA manufactured by BioWhittaker, Inc. (Walkersville, Md.) in the dose-response study and with Wampole Laboratories, Dist., Carter-Wallace, Inc. (Cranbury, N.J.) in the randomized safety and immunogenicity study. Next, a 13C urea breath test (13C UBT; Meretek, Inc., Houston, Tex.) was used to confirm the presence or absence of active infection. Volunteers who were positive by both the ELISA and breath test were considered *H. pylori*-infected and those negative by both assays were considered uninfected. Seropositive subjects who had negative breath tests were excluded from participation.

Study design. (i) **Dose-response study among *H. pylori*-infected and uninfected subjects.** An initial dose-response study was conducted among 23 volunteers to determine whether increasing inocula of HWC, coadministered with 25 µg of LT_{R192G}, were well tolerated and to evaluate whether increasing HWC inocula enhanced the immune response. It was anticipated that the optimal dose would contain 2.5 × 10^10 HWC plus 25 µg of LT_{R192G}. Groups of 3 to 10 *H. pylori*-infected or *H. pylori*-uninfected subjects were assigned in an unblinded fashion to receive three oral doses of vaccine on days 0, 14, and 28 at an inoculum of either 2.5 × 10^8, 2.5 × 10^9, or 2.5 × 10^10 HWC plus 25 µg of LT_{R192G} (Table 1). Safety was established at each dose level before a new group of volunteers received a higher inoculum of vaccine. For the purpose of characterizing the dose response, the eight *H. pylori*-infected subjects who received 2.5 × 10^10 HWC plus 25 µg of LT_{R192G} as part of the randomized safety and immunogenicity study, described below (Table 2), are also included in this analysis.

**An initial dose-response study was conducted among 23 volunteers to determine whether increasing inocula of HWC, coadministered with 25 µg of LT_{R192G}, were well tolerated and to evaluate whether increasing HWC inocula enhanced the immune response. It was anticipated that the optimal dose would contain 2.5 × 10^10 HWC plus 25 µg of LT_{R192G}. Groups of 3 to 10 *H. pylori*-infected or *H. pylori*-uninfected subjects were assigned in an unblinded fashion to receive three oral doses of vaccine on days 0, 14, and 28 at an inoculum of either 2.5 × 10^8, 2.5 × 10^9, or 2.5 × 10^10 HWC plus 25 µg of LT_{R192G} (Table 1). Safety was established at each dose level before a new group of volunteers received a higher inoculum of vaccine. For the purpose of characterizing the dose response, the eight *H. pylori*-infected subjects who received 2.5 × 10^10 HWC plus 25 µg of LT_{R192G} as part of the randomized safety and immunogenicity study, described below (Table 2), are also included in this analysis.

Notes:

1. For the purpose of characterizing the dose response, the eight *H. pylori*-infected subjects who received 2.5 × 10^10 HWC plus 25 µg of LT_{R192G} were well tolerated and to evaluate whether increasing HWC inocula enhanced the immune response. It was anticipated that the optimal dose would contain 2.5 × 10^10 HWC plus 25 µg of LT_{R192G}. Groups of 3 to 10 *H. pylori*-infected or *H. pylori*-uninfected subjects were assigned in an unblinded fashion to receive three oral doses of vaccine on days 0, 14, and 28 at an inoculum of either 2.5 × 10^8, 2.5 × 10^9, or 2.5 × 10^10 HWC plus 25 µg of LT_{R192G} (Table 1). Safety was established at each dose level before a new group of volunteers received a higher inoculum of vaccine. For the purpose of characterizing the dose response, the eight *H. pylori*-infected subjects who received 2.5 × 10^10 HWC plus 25 µg of LT_{R192G} as part of the randomized safety and immunogenicity study, described below (Table 2), are also included in this analysis.

(iii) Inoculation. Volunteers fasted for 90 min before and after inoculation. Immediately before inoculation a buffer solution was prepared by dissolving 2 g of NaHCO₃ in 150 ml of sterile water. Volunteers drank 120 ml of buffer solution followed 1 min later by the test inoculum suspended in the remaining 30 ml of buffer solution.

Clinical evaluation. Volunteers were observed at the study site for at least 1 h before and after inoculation to ensure that fasting was maintained and to monitor for immediate reactions. For 7 days following each inoculation, volunteers completed a standardized diary form to assess their clinical response. They recorded their evening oral temperature, the presence of symptoms (epigastric}

TABLE 1. Open-label, dose-response study design^a

<table>
<thead>
<tr>
<th>HWC vaccine inoculum</th>
<th>LTR<sub>R192G</sub> dose (µg)</th>
<th>H. pylori status</th>
<th>No. of subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 × 10<sup>8</sup></td>
<td>25</td>
<td>Uninfected</td>
<td>3</td>
</tr>
<tr>
<td>2.5 × 10<sup>8</sup></td>
<td>25</td>
<td>Infected</td>
<td>4</td>
</tr>
<tr>
<td>2.5 × 10<sup>9</sup></td>
<td>25</td>
<td>Uninfected</td>
<td>3</td>
</tr>
<tr>
<td>2.5 × 10<sup>10</sup></td>
<td>25</td>
<td>Infected</td>
<td>3</td>
</tr>
<tr>
<td>2.5 × 10<sup>10</sup></td>
<td>25</td>
<td>Uninfected</td>
<td>10</td>
</tr>
</tbody>
</table>

^a For the purpose of characterizing the dose response, the eight *H. pylori*-infected subjects who received 2.5 × 10^10 inactivated HWC vaccine plus 25 µg of LTR_{R192G} adjuvant as part of the randomized safety and immunogenicity study (Table 2) are also included in the analysis of this portion of the study.

TABLE 2. Randomized, double-blind, placebo-controlled safety and immunogenicity study design among subjects with subclinical *H. pylori* infection

<table>
<thead>
<tr>
<th>No. of subjects</th>
<th>Randomized assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.5 × 10<sup>8</sup> HWC</td>
</tr>
<tr>
<td>3</td>
<td>Placebo-vaccine</td>
</tr>
<tr>
<td>3</td>
<td>Placebo-vaccine</td>
</tr>
<tr>
<td>3</td>
<td>Placebo-adjuvant</td>
</tr>
<tr>
<td>3</td>
<td>LT<sub>R192G</sub></td>
</tr>
<tr>
<td>3</td>
<td>Placebo-adjuvant</td>
</tr>
<tr>
<td>3</td>
<td>LT<sub>R192G</sub></td>
</tr>
</tbody>
</table>
pain, heartburn, malaise, nausea, or bloating), vomiting, and the consistency (loose or formed) and presence of gross blood in each stool passed. Symptoms were graded as follows: 0, absent; 1, mild (hardly noticed); 2, moderate (both, some, but continued the same activities); and 3, severe (interrupted activities or sickness). Fever was defined as an oral temperature of 100°F or higher, and diarrhea was defined as three or more loose stools within a 24-h period.

H. pylori-infected subjects underwent a repeat 14C UBT on day 56 to exclude the possibility of interim *H. pylori* infection. Infected subjects in the dose-response study completed follow-up breath tests on day 56, and those in the randomized study completed follow-up breath tests on days 56, 180, and 210 to determine whether *H. pylori* had been eradicated following vaccination.

Immunology. (i) Serum antibody. Blood was collected on days 0, 14, 28, 35, 56, and 180 to measure immunoglobulin A (IgA) and IgG responses to LTR129G and HWC and IgG responses to HWC plus placebo-adjuvant to determine whether addition of HWC plus placebo-adjuvant versus placebo-vaccine plus placebo-adjuvant to assess the immunogenicity of the vaccine when given without mucosal adjuvant and (ii) responses to *H. pylori* antigen following administration of HWC plus placebo-adjuvant to determine whether addition of mucosal adjuvant enhances the immune response to the HWC vaccine. Geometric mean values (peak vaccination) were compared between the randomized vaccine groups using analysis of covariance, adjusting for prevaccination values.

Two-tailed hypotheses were evaluated throughout, with statistical significance determined at the 5% level. Corrections for multiple comparisons were not made.

RESULTS

Clinical tolerance. The clinical response to vaccination among the 41 subjects who participated in the trial is shown in Table 3. Six subjects experienced diarrhea (three of whom had baseline *H. pylori* infection); one subject received placebo-vaccine plus LTR192G, and the remaining five received 2.5 × 10^{10} HWC plus LTR192G (Table 3). Thus, diarrhea was seen only among subjects who received LTR192G (with or without vaccine) and only following the highest (2.5 × 10^{10}) HWC dose. Diarrhea followed the first inoculation in all but one subject. The episodes lasted for 1 to 3 days, during which time these subjects passed a total of 3 to 17 loose stools. Five subjects met the definition of fever (including one who received only placebo) but experienced only a single temperature elevation of 100 to 101°F 2 to 5 days after the first inoculation (Table 3). Two recipients of 2.5 × 10^{10} HWC plus LTR192G vomited once after the first inoculation; one also had diarrhea, and the other also had a fever.

One or more gastrointestinal complaints (nausea, anorexia, malaise, heartburn, stomachache, and abdominal pain) was reported by subjects in all study groups (Table 3). There was no apparent effect of *H. pylori* infection status on the occurrence of these symptoms following vaccination. Affected subjects rated their symptoms as mild or moderate in severity with the exception of two recipients of 2.5 × 10^{10} HWC vaccine plus LTR192G who experienced abdominal pain that made them sufficiently uncomfortable to alter their normal activity. Two *H. pylori*-infected subjects observed blood streaks in a formed stool; one subject had received 2.5 × 10^{10} HWC plus LTR192G, and the other had received placebo-adjuvant plus placebo-vaccine.

Effect of vaccination on *H. pylori* infection, as measured by ^{13}C UBT. *H. pylori*-infected subjects had repeat ^{13}C UBT after vaccination. In the dose-response study, all six subjects remained positive when the test was repeated 2 months after vaccination. In the randomized study, the ^{13}C UBT was repeated 2, 6, and 7.5 months after vaccination, and 17 of 18 remained
positive. One recipient of placebo-vaccine plus \(\text{LT}_{R192G} \) reverted to negative at 6 months; she had received a 1-week course of metronidazole to treat an upper respiratory infection approximately 1 month earlier. All 17 \(H. \text{pylori} \)-uninfected subjects had negative \(^{13}\)C UBT results when the test was repeated 2 months after vaccination.

Dose-dependent immune responses to HWC vaccine plus \(\text{LT}_{R192G} \) among \(H. \text{pylori} \)-infected and uninfected subjects.

(i) Anti-HWC responses

Immunization elicited rises in the geometric mean serum and mucosal anti-HWC antibodies only among subjects who received the highest (2.5 \(\times 10^{10} \)) HWC vaccine dose (Fig. 1). Whereas postvaccination increases in geometric mean peak serum IgA and IgG titers were marginal \((P = 0.06)\) and were seen only among \(H. \text{pylori} \)-infected subjects, the fecal and salivary IgA responses were statistically significant and occurred in both \(H. \text{pylori} \)-infected and uninfected volunteers. Anti-HWC ASC responses were meager (none exceeded 10 cells per \(10^{6} \) PBMC) and so were not subjected to statistical analysis (Fig. 1).

(ii) Anti-\(\text{LT}_{R192G} \) responses

As shown in Fig. 2, rises in serum and mucosal anti-\(\text{LT}_{R192G} \) antibodies were observed following vaccination. Interestingly, postvaccination anti-\(\text{LT}_{R192G} \) levels appeared to rise as the dose of HWC vaccine increased, despite a constant dose of adjuvant. Statistically significant anti-\(\text{LT}_{R192G} \) antibody increases occurred only in the groups (both \(H. \text{pylori} \)-infected and uninfected) receiving the highest (2.5 \(\times 10^{10} \)) HWC vaccine dose, for serum IgG (but not IgA), fecal IgA, and salivary IgG. In contrast to the minimal ASC responses to HWC, nearly half of the anti-\(\text{LT}_{R192G} \) ASC responses exceeded 100 cells per \(10^{6} \) PBMC. Significant increases in the geometric mean number of LT\(\text{R192G} \)-specific IgA- and IgG-producing ASCs were observed following vaccination among \(H. \text{pylori} \)-infected and uninfected subjects who received 2.5 \(\times 10^{10} \) HWC (Fig. 2).

CMI responses among \(H. \text{pylori} \)-infected subjects to immunization with 2.5 \(\times 10^{10} \) HWC plus \(\text{LT}_{R192G} \)

(i) Lymphoproliferative responses

Immunization with 2.5 \(\times 10^{10} \) HWC plus \(\text{LT}_{R192G} \) resulted in increased, albeit statistically insignificant \((P = 0.22)\) mean group proliferative responses to the \(H. \text{pylori} \) sonicate among \(H. \text{pylori} \) uninfected volunteers (Fig. 3A). Significant rises in proliferative responses to 2 \(\mu \text{g} \) of \(H. \text{pylori} \) sonicate per ml were observed in 5 of the 10 volunteers evaluated, while no significant increases in proliferative responses were observed when PBMC were incubated with either recombinant catalase or BSA (Fig. 3A). In contrast, no significant increases in mean lymphoproliferative responses to the \(H. \text{pylori} \) sonicate were observed following immunization of \(H. \text{pylori} \)-infected volunteers (Fig. 3B).

(ii) Production of IFN-\(\gamma \) and IL-5

Immunization with 2.5 \(\times 10^{10} \) HWC plus \(\text{LT}_{R192G} \) resulted in significant \((P < 0.05)\) increases among \(H. \text{pylori} \) uninfected volunteers in mean group IFN-\(\gamma \) production to the \(H. \text{pylori} \) sonicate at 2 \(\mu \text{g/ml} \) (Fig. 4A); significant rises were observed in 7 of the 10 volunteers studied. Postvaccination responses, albeit not statistically significant, were also observed when cultures contained 0.2 and 20 \(\mu \text{g} \) of the \(H. \text{pylori} \) sonicate per ml (data not shown). No significant increases in mean IFN-\(\gamma \) production were observed when PBMC were incubated with either recombinant catalase or BSA (Fig. 4A). In contrast, significant increases in mean IFN-\(\gamma \) production to the \(H. \text{pylori} \) sonicate were not observed following the immunization of \(H. \text{pylori} \)-infected volunteers (Fig. 4B). Undetectable or minimal levels of IL-5 were observed in culture supernatants from PBMC obtained before and after immunization of \(H. \text{pylori} \)-infected and uninfected volunteers (data not shown).

Immune response of \(H. \text{pylori} \)-infected subjects to HWC vaccine with or without coadministered \(\text{LT}_{R192G} \)

In the first analysis, the anti-HWC responses among recipients of 2.5 \(\times 10^{10} \) HWC plus placebo-adjuvant were compared with the responses among recipients of placebo-vaccine plus placebo-adjuvant to assess the immunogenicity of the vaccine alone in \(H. \text{pylori} \)-infected subjects. It was observed that HWC recipients achieved significantly higher geometric mean fecal IgA titers than those receiving placebo (301 versus 88, \(P < 0.001) \) (Fig. 5).

In the second analysis, comparisons were performed to determine whether coadministered adjuvant increased the immunogenicity of the high dose of HWC. The only comparison of anti-HWC responses that approached statistical significance was the geometric mean serum IgA titer among subjects who...
received HWC with adjuvant versus those who received HWC alone (1,646 versus 400, \(P = 0.06\); Fig. 5).

DISCUSSION

These results demonstrate that vaccination with inactivated HWC vaccine is immunogenic when given to volunteers with or without subclinical *H. pylori* infection. Furthermore, it provides the first indication in humans that an orally administered vaccine against *H. pylori* can induce mucosal IgA responses, as measured in stool and saliva, and elicit both IFN-\(\gamma\) and the appearance of circulating sensitized lymphocytes that proliferate.

Despite extensive investigation in animals demonstrating that mucosal adjuvants are essential to produce protective immunity to *Helicobacter*, comparable human experience is lacking. Although the sample sizes were small in our study and the results must be considered preliminary, one response (serum anti-HWC IgA) approached statistical significance when subjects who received HWC with adjuvant were compared to those who received HWC alone (1,646 versus 400, \(P = 0.06\)). A previous series of clinical trials suggested that native LT adjuvanted the immune responses to rUrease, although direct comparisons of rUrease with or without adjuvant were not made (49). In these trials, native LT coadministered with rUrease vaccine induced serum and ASC IgA responses but not local (salivary and gastric) responses to the vaccine antigen (49), whereas in a previous trial, rUrease vaccine alone failed to induce an immune response (Kreiss et al., Letter). Although no recipients of LT plus rUrease were cured of their *H. pylori* infection, a significant decrease in gastric *H. pylori* bacterial density (but not inflammation) was observed in biopsy tissue. We were unable to determine whether vaccination similarly

FIG. 1. Immune responses to HWC antigen according to *H. pylori* infection status and vaccine dose. Volunteers received an oral dose of either \(2.5 \times 10^6\), \(2.5 \times 10^8\), or \(2.5 \times 10^{10}\) inactivated HWC vaccine plus 25 \(\mu\)g of LT_{192G} adjuvant on days 0, 14, and 28. Responses are expressed as the geometric mean (GM) titer or geometric mean number of ASCs per 10⁶ PBMC ± the back-transformed standard error measured prevaccination and postvaccination. Panels A, C, E, G, I, and K represent volunteers with no evidence of *H. pylori* infection (there were 3, 4, and 10 recipients of the \(10^6\), \(10^8\), and \(10^{10}\) doses of HWC, respectively). Panels B, D, F, H, J, and L represent volunteers with subclinical *H. pylori* infection at baseline (there were 3, 3, and 8 recipients of the \(10^6\), \(10^8\), and \(10^{10}\) doses of HWC, respectively). Comparisons of pre- and postvaccination titers: *, \(P < 0.05\); **, \(P < 0.01\); †, \(P = 0.06\).
reduced the bacterial burden in our trial because biopsies were not taken. Growing evidence in animal models suggests that both prophylactic and therapeutic Helicobacter vaccines do not achieve sterilizing immunity but rather reduce levels of bacterial colonization (13, 17, 35, 43). It remains to be determined whether sterilizing immunity can be achieved and, if not, whether suppression alone can prevent the pathological consequences of H. pylori infection.

It has been hypothesized that a balance of Th1 and Th2 responses is necessary to invoke protective immunity against H. pylori. Initial H. pylori vaccines were designed to target Th2-type responses, reasoning that activation of antigen-specific IgA at the mucosal surface would facilitate the clearance of bacteria from the stomach (10, 24). In mice, the enhanced efficacy of vaccine antigens conferred by coadministered native or nontoxic mutants of LT and CT in preventing and eradicating H. pylori infection has been attributed to the ability of these mucosal adjuvants to drive preferential activation of Th2-type CD4+ responses (7, 15, 24, 58, 63, 68). This view is supported by observations that mice given monoclonal anti-H. felis (11) or anti-urease (4) IgA at the time of wild-type challenge were significantly protected against infection. Furthermore, the presence of antigen-specific secretory IgA in mucosal secretions (44) and not serum IgG (21) has been associated with protection in mice against acquisition of H. felis infection following challenge. In contrast, natural infection induces a more proinflammatory Th1-type response in the mouse H. felis model (21) and also in humans with H. pylori-associated peptic disease (30). However, the optimal type of immune response to be induced by vaccination requires further investigation. Recent observations showed that protection induced by mucosal immunization with rUrease plus LT in B-cell knockout mice was equivalent to that observed in the wild-type mouse strain, suggesting that antibody responses to urease are not required.

FIG. 2. Immune responses to the mucosal adjuvant LT_R192G according to H. pylori infection status and vaccine dose. Volunteers received an oral dose of either 2.5 x 10^6, 2.5 x 10^8, or 2.5 x 10^10 inactivated HWC vaccine plus 25 µg of LT_R192G adjuvant on days 0, 14, and 28. Responses are expressed as the geometric mean (GM) titer, the geometric mean OD, or the geometric mean number of ASCs per 10^6 PBMC ± the back-transformed standard error measured prevaccination and postvaccination. Panels A, C, E, I, and K represent volunteers with no evidence of H. pylori infection (there were 3, 4, and 10 recipients of the 10^6, 10^8, and 10^10 doses of HWC, respectively). Panels B, D, F, H, J, and L represent volunteers with subclinical H. pylori infection at baseline (there were 3, 3, and 8 recipients of the 10^6, 10^8, and 10^10 doses of HWC, respectively). Comparisons of pre- and postvaccination titers: *, P < 0.05; **, P < 0.01.
for protection (18). Furthermore, rUrease vaccine injected with adjuvants that induce strong Th1- and Th2-type responses (e.g., saponin and glycol-lipopeptide) elicits better protection of mice against H. pylori challenge than rUrease mixed with adjuvants that induced a predominant Th2-type response (e.g., LT) (29).

Interestingly, vaccination with 2.5×10^{10} HWC plus 25 mg of LTR192G elicited significant increases in sensitized lymphocytes that proliferated and produced IFN-γ, but not IL-5 production, in response to an H. pylori sonicate or purified recombinant catalase. The results are expressed as the mean net cpm \pm the standard error for all volunteers in each group \dagger, $P = 0.22$ (paired t test) of mean postimmunization versus preimmunization values.

VOL. 69, 2001 CLINICAL RESPONSE TO INACTIVATED H. PYLORI VACCINE 3587

FIG. 3. Proliferative responses by PBMC from eight H. pylori-uninfected (A) and 10 H. pylori-infected (B) volunteers following ingestion of 2.5×10^{10} inactivated HWC vaccine plus $25 \mu g$ of LTR192G adjuvant. PBMC obtained from volunteers before or 56 days after immunization were evaluated for lymphoproliferative responses to an H. pylori sonicate or purified recombinant catalase. The results are expressed as the mean net cpm \pm the standard error for all volunteers in each group \dagger, $P = 0.22$ (paired t test) of mean postimmunization versus preimmunization values.

FIG. 4. IFN-γ production by PBMC from eight H. pylori-uninfected (A) and 10 H. pylori-infected (B) volunteers following ingestion of 2.5×10^{10} inactivated HWC vaccine plus $25 \mu g$ of LTR192G adjuvant. PBMC obtained from the volunteers before or 56 days after immunization were evaluated for IFN-γ production to an H. pylori sonicate or purified recombinant catalase. The results are expressed as the mean net pg/ml \pm the standard error for all volunteers in each group \ast, $P < 0.05$ (paired t test) of mean postimmunization versus preimmunization measurements.

sensitized cells that proliferate and produce predominantly type 1 cytokines (i.e., IFN-γ but not IL-5 production) to H. pylori antigens suggest that immunization with whole-cell vaccine may mimic to some extent the responses observed during natural infection. However, the fact that immunization of volunteers also produces increases in anti-H. pylori fecal and salivary IgA suggests that type 2 cytokine responses are also elicited. In contrast, the responses observed following immunization in H. pylori-infected volunteers, characterized by increases in serum, fecal, and salivary IgA in the absence of proliferation or IFN-γ production, suggest a predominance of type 2 responses. Alternatively, our inability to detect IFN-γ and proliferative responses in H. pylori-infected volunteers might be related to the previously observed phenomenon that exposure of PBMC and lamina propria lymphocytes from H. pylori-infected volunteers to H. pylori antigens resulted in lower proliferative responses and IFN-γ production than that observed.
with cells isolated from noninfected volunteers, suggesting that *H. pylori* antigens might suppress specific immune responses (19).

Vaccination was generally well tolerated, although self-limited diarrhea occurred (generally only after the first dose) in 28% of subjects who received 2.5×10^{10} HWC vaccine (vaccine $+$) or placebo-vaccine (vaccine $-$), plus either 25 μg of LT$_{R192G}$ (adjuvant $+$) or placebo-adjuvant (adjuvant $-$). The responses are expressed as the geometric mean (GM) titer or the geometric mean number of ASCs per 106 PBMC \pm the back-transformed standard error. *, $P < 0.001$, comparing recipients vaccine $+$ plus adjuvant $+$ with recipients of vaccine $-$ plus adjuvant $-$; †, $P = 0.06$, comparing recipients of vaccine $+$ plus adjuvant $+$ with recipients of vaccine $+$ plus adjuvant $-$. Note that the responses in the group that received vaccine $+$ and adjuvant $+$ are also shown in Fig. 1.

FIG. 5. Postvaccination peak immune responses of *H. pylori*-infected subjects to HWC antigen according to a randomized immunizing regimen. Volunteers received an oral dose of either 2.5×10^{10} HWC vaccine (vaccine $+$) or placebo-vaccine (vaccine $-$), plus either 25 μg of LT$_{R192G}$ (adjuvant $+$) or placebo-adjuvant (adjuvant $-$). The responses are expressed as the geometric mean (GM) titer or the geometric mean number of ASCs per 106 PBMC \pm the back-transformed standard error. *, $P < 0.001$, comparing recipients vaccine $+$ plus adjuvant $+$ with recipients of vaccine $-$ plus adjuvant $-$; †, $P = 0.06$, comparing recipients of vaccine $+$ plus adjuvant $+$ with recipients of vaccine $+$ plus adjuvant $-$. Note that the responses in the group that received vaccine $+$ and adjuvant $+$ are also shown in Fig. 1.

In sum, the encouraging results of this study suggest that it is possible to stimulate an immune response to *H. pylori* antigens using an inactivated whole-cell vaccine. However, there is controversy regarding which immune responses are necessary to prevent or cure infection, particularly in light of the fact that chronic *H. pylori* infection occurs in the face of measurable systemic and local (gastric and salivary) antibody responses (8, 9, 38) and individuals who have been cured of their *H. pylori* components. LT has been reported to be activated by proteolytic cleavage at this site (5); however, cleavage at this site is not essential for the expression of enzymatic activity (26). Given the relationship between diarrhea and increasing doses of vaccine, it is also possible that the enterotoxic activity of *Helicobacter*’s vacuolating toxin (VacA) was not completely eliminated with formalin processing (27).
infection are occasionally reinfected (67), even with a homologous strain (60). The success of any H. pylori vaccine to prevent and/or cure infection in humans hinges on the ability to identify antigens and delivery systems which stimulate active immunity without inducing undesirable inflammatory processes and to target these responses to the stomach.

ACKNOWLEDGMENTS

We thank the volunteers who participated in this trial, Kathy Palmer for help with recruitment and clinical evaluation of volunteers, James Nataro and Sofie Livio for inoculum preparation, Mardi Reyman for laboratory assistance, and Robert Edeleman, George Fantry, and Steven James for helpful suggestions.

This study was supported by Antex Biologics, Inc.

REFERENCES

6161.
43. Lee, C. K., K. Soike, J. Hill, K. Georgakopoulos, T. Tibbitts, J. Ingrassia,
bacter pylori urease decreases colonization levels following experimental infection of rhesus monkeys. Vaccine 17:1493–1505.
44. Lee, C. K., R. Weltzin, W. D. Thomas, Jr., H. Kleanthous, T. H. Ernak, G.
Soman, J. E. Hill, S. K. Ackerman, and T. P. Monath. 1995. Oral immuno-
45. Marchetti, M., B. Arico, D. Burroni, N. Figura, R. Rappuoli, and P. Ghia.
46. Marchetti, M., M. Rossi, V. Giannelli, M. M. Giuliani, M. Piza, S. Censini,
A. Covacci, P. Massari, C. Pagliaicci, R. Manetti, J. L. Telford, G. Douce, G.
Dougan, R. Rappuoli, and P. Ghia. 1998. Protection against Helicobacter pylori
infection in mice by intragastric vaccination with H. pylori antigens is achieved using a non-toxic mutant of E. coli heat-labile enterotoxin (LT) as adjuvant. Vaccine 16:33–37.
double-blind trial of duodenal ulcer relapse after eradication of Campylo-
48. Michetti, P., I. Corthesy-Theulaz, C. Davin, R. Haas, A. C. Vaney, M. Heltz,
J. Bille, J. P. Kraehenbuhl, E. Saraga, and A. L. Blum. 1994. Immunization of BALBc mice against Helicobacter pylori infection with Helicobacter pylori
49. Michetti, P., C. Kreiss, K. L. Kotloff, N. Porta, J. L. Blanco, D. Bachmann,
M. Herranz, P. F. Saldinger, I. Corthesy-Theulaz, G. Losonsky, R. Nichols,
50. NIH Consensus Development Panel on Helicobacter pylori in Peptic Ulcer
Disease. 1994. NIH Consensus Conference: Helicobacter pylori in peptic ulcer
51. Nomura, A., G. N. Stemmermann, P. H. Chyou, I. Kato, G. I. Perez-Perez,
52. Parsonnet, J., G. R. Friedman, D. P. Vandersteen, Y. Chang, J. H. Vogelman,
1999. Attenuated AguaBA Salmonella typhi vaccine strain CVD 915 as a live
vector utilizing prokaryotic or eukaryotic expression systems to deliver for-
1999. Low rates of Helicobacter pylori reinfection in children. Gastroenterol-
58. Saldinger, P. F., N. Porta, P. Launois, J. A. Louis, G. A. Waanders, H. Bou-
nization of BALBc mice with Helicobacter urease B induces a T helper 2
59. Satin, B., G. Del Giudice, B. Bella, V. S. Dusi, C. Audanna, F. Tonello, D.
Kelleher, R. Rappuoli, C. Montecucco, and P. Rossi. 2000. The neutrophil-
activating protein (HP-NAP) of Helicobacter pylori is a protective antigen
60. Schutze, K., E. Hentschel, B. Dragosics, and A. M. Hirschli. 1995. Helico-
bacter pylori reinfection with identical organisms: transmission by the pa-
L. Lindberg, and M. M. Levine. 1994. Cytokine production patterns and lym-
62. Tacket, C. O., H. S. Mason, G. Losonsky, J. D. Clements, M. M. Levine, and
63. Takahashi, I., M. Marinaro, H. Kiyono, R. J. Jackson, I. Nakagawa, K.
64. Todoroki, I., T. Joh, K. Watanabe, M. Miyashita, K. Seno, T. Nomura,
H. Ohara, Y. Yokoyama, K. Tochikubo, and M. Itoh. 2000. Suppres-
65. Wotherspoon, A. C., C. Dugoni, T. C. Dis, L. Pan, A. Moschini, M. de Boni,
and P. G. Isaacson. 1993. Regression of primary low-grade B-cell gastric
are potent inducers of proinflammatory cytokine secretion by human mono-

Editor: J. T. Barbieri