Effect of Mycobacterium tuberculosis-Specific 10-Kilodalton Antigen on Macrophage Release of Tumor Necrosis Factor Alpha and Nitric Oxide

Vladimir Trajkovic,1,2 Gyanesh Singh,1 Balwan Singh,1 Sarman Singh,3 and Pawan Sharma1*

Infection and Immunity, Vol. 70, No. 12, p. 6558–6566

Among various Mycobacterium tuberculosis products, proteins that are actively secreted into the culture medium are currently of particular interest. The idea that these proteins play an important role in the development of protective immune responses is based on findings that a protective T-cell response can be induced by immunization with live but not dead M. tuberculosis (31). Moreover, culture filtrate proteins (CFP) of M. tuberculosis have been shown to contain immunogenic components that elicit at least partial protective immunity (1). One of the CFP constituents and most promising candidates for the development of novel vaccines and diagnostic assays is a recently discovered 10-kDa protein, originally designated CFP-10 (5). CFP-10, also known as secreted antigen 10 (MTSA-10, originally designated CFP-10) can bind to the surface of mouse J774 macrophage-like cells and stimulate the secretion of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). MTSA-10 also synergized with gamma interferon (IFN-γ) for the induction of the microbicidal free radical nitric oxide (NO) in J774 cells, as well as in bone marrow-derived and peritoneal macrophages. On the other hand, pretreatment of J774 cells with MTSA-10 markedly reduced NO but not TNF-α or interleukin 10 (IL-10) release upon subsequent stimulation with lipopolysaccharide or the cell lysate of M. tuberculosis. The presence of IFN-γ during stimulation with M. tuberculosis lysate antagonized the desensitizing effect of MTSA-10 pretreatment on macrophage NO production. The activation of protein tyrosine kinases (PTK) and the serine/threonine kinases p38 MAPK and ERK was apparently required for MTSA-10 induction of TNF-α and NO release, as revealed by specific kinase inhibitors. However, only p38 MAPK activity, not PTK or ERK activity, was partly responsible for MTSA-10-mediated macrophage desensitization. The modulation of macrophage function by MTSA-10 suggests a novel mechanism for its involvement in immunopathogenesis of tuberculosis and might have implications for the prevention, diagnosis, and therapy of this disease.

Accepted 11 September 2002

Secreted proteins of Mycobacterium tuberculosis are major targets of the specific immunity in tuberculosis and constitute promising candidates for the development of more efficient vaccines and diagnostic tests. We show here that M. tuberculosis-specific antigen 10 (MTSA-10, originally designated CFP-10) can bind to the surface of mouse J774 macrophage-like cells and stimulate the secretion of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). MTSA-10 also synergized with gamma interferon (IFN-γ) for the induction of the microbicidal free radical nitric oxide (NO) in J774 cells, as well as in bone marrow-derived and peritoneal macrophages. On the other hand, pretreatment of J774 cells with MTSA-10 markedly reduced NO but not TNF-α or interleukin 10 (IL-10) release upon subsequent stimulation with lipopolysaccharide or the cell lysate of M. tuberculosis. The presence of IFN-γ during stimulation with M. tuberculosis lysate antagonized the desensitizing effect of MTSA-10 pretreatment on macrophage NO production. The activation of protein tyrosine kinases (PTK) and the serine/threonine kinases p38 MAPK and ERK was apparently required for MTSA-10 induction of TNF-α and NO release, as revealed by specific kinase inhibitors. However, only p38 MAPK activity, not PTK or ERK activity, was partly responsible for MTSA-10-mediated macrophage desensitization. The modulation of macrophage function by MTSA-10 suggests a novel mechanism for its involvement in immunopathogenesis of tuberculosis and might have implications for the prevention, diagnosis, and therapy of this disease.

Received 22 April 2002/Returned for modification 3 June 2002/Accepted 11 September 2002

* Corresponding author. Mailing address: International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India. Phone: 9111 6189358. Fax: 9111 6162316. E-mail: pawans@icgeb.res.in.

MATERIALS AND METHODS

Reagents. Dulbecco's modified Eagle medium and fetal calf serum were from Gibco BRL (Grand Island, N.Y.). The QiAexpressinon protein expression and purification kit was from Qiagen (Valencia, Calif.). Escherichia coli lipopolysaccharide (LPS) was from Difco (Sparks, Md.), mouse recombinant gamma interferon (IFN-γ) and Interleukin-10 ELISA kit for interleukin 10 (IL-10) were from Genzyme (Cambridge, Mass.), and paired anti-TNF-α enzyme-linked immunosorbent assay (ELISA) antibodies and murine recombinant macrophage colony-stimulating factor were from R&D Systems (Minneapolis, Minn.), Griess reagent, N-hydroxyssucimide–biotin, genistein, SB203580, polymyxin B sulfate, N²-methyl-L-arginine (L-NMMA), N²-methyl-L-arginine (L-NMMA), amino- guanidine, and an E-Toxate kit for LPS detection were all purchased from Sigma (St. Louis, Mo.). U0126 was obtained from Promega (Madison, Wis.), and streptavidin-fluorescein isothiocyanate (FITC) was from BD Pharmingen (San Diego, Calif.).

6558
The six-His-tagged MTSA-10 was purified by affinity chromatography using Ni-NTA agarose with the indicated imidazole concentration in the wash and elution steps. The cleared cell lysate and various chromatography fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Proteins were visualized with Coomassie blue (A) and probed with antipolyhistidine antibody after Western blotting (B). Lanes: M, molecular mass markers; 1, noninduced cell lysate; 2, IPTG (isopropyl-β-D-thiogalactopyranoside)-induced cell lysate; 3, flowthrough; 4 to 6, 20 mM imidazole washes; 7 to 9, 250 mM imidazole eluates. The arrow indicates the recombinant MTSA-10 protein band of the expected size (~10 kDa). (C) Silver staining of purified MTSA-10.
The effect of MTSA-10 on macrophage TNF-α was undetectable in the supernatant of MTSA-10-treated cultures. Dose-dependent manner (Fig. 2B). IL-10, however, remained significantly increased TNF-α production by J774 macrophages in a dose-dependent manner (Fig. 2B). IL-10, however, remained undetectable in the supernatant of MTSA-10-treated cultures. The effect of MTSA-10 on macrophage TNF-α release was not a consequence of LPS contamination, since it could not be mimicked by 0.05 ng of E. coli LPS per ml (data not shown), a concentration estimated to be present in 100 μg of our MTSA-10 preparation per ml. Furthermore, MTSA-10 caused a significant increase of macrophage TNF-α production even at 12.5 μg/ml, which contained less than 0.01 ng of LPS per ml. Finally, the LPS-inactivating agent polymyxin B did not significantly affect MTSA-10-induced TNF-α synthesis, while it totally abolished that triggered by LPS (Fig. 2C).

MTSA-10 pretreatment desensitizes J774 cells for LPS and M. tuberculosis lysate-induced NO release. While MTSA-10 did not affect macrophage NO synthesis when applied alone or simultaneously with the inducible-NO-synthase (iNOS) activator LPS (data not shown), pretreatment of J774 cells with MTSA for 18 h caused significant reduction of NO release upon subsequent exposure to LPS (Fig. 3A). A similar inhibitory effect of MTSA pretreatment was observed when the whole-cell lysate of M. tuberculosis was used to stimulate macrophage NO production instead of LPS (Fig. 3A). This was not due to a toxic or antiproliferative action of MTSA-10, as the cellular respiration assessed by the MTT assay did not differ between MTSA-10-pretreated and control cultures (data not shown). Interestingly, the effect of MTSA-10 was selective for NO, since neither TNF-α nor IL-10 release induced by LPS or M. tuberculosis lysate was affected in MTSA-pretreated J774 cells (Fig. 3A). LPS at 0.05 ng/ml failed to mimic, and polymyxin B did not abolish the effect of MTSA pretreatment (data not shown), confirming that macrophage desensitization was indeed mediated by MTSA-10. Moreover, in spite of comparable down-regulation of NO synthesis, macrophage reprograming by LPS was distinct from that induced by MTSA-10, since it involved the reduction of TNF-α, as well as a significant increase of IL-10 release following the second round of LPS stimulation (Fig. 3B).

IFN-γ synergizes with MTSA-10 for NO production in J774 cells. In contrast to LPS- or M. tuberculosis lysate-induced NO release, MTSA-10 pretreatment failed to affect NO production in macrophages stimulated with a high dose (100 U/ml) of IFN-γ (Fig. 4A). Furthermore, although IFN-γ at lower concentration (10 U/ml) did not induce macrophage NO synthesis, it markedly potentiated M. tuberculosis lysate-stimulated NO production and almost completely antagonized the desensitizing effect of MTSA pretreatment (Fig. 4B). Interestingly, not only did MTSA-10 fail to suppress macrophage NO release when applied before IFN-γ stimulation, it even synergized for the induction of NO with a low dose (10 U/ml) of IFN-γ, provided that both stimuli were applied simultaneously (Fig. 4C). The synergism was lost at a lower IFN-γ concentration (1 U/ml), but the potentiating effect of MTSA-10 was preserved when macrophage NO synthesis was induced by a high dose (100 U/ml) of IFN-γ (Fig. 4D). Again, the effect of MTSA-10 could not be reproduced by 0.05 ng of LPS per ml, arguing against the involvement of the extremely low levels of contaminating LPS (data not shown). Aminoguanidine (2 mM), a selective inhibitor of iNOS, and the nonselective NOS blocker L-NMMA (500 μM) (but not its inactive counterpart D-NMMA) both prevented the nitrite accumulation in MTSA-10–IFN-γ-stimulated cultures (12.9 ± 0.2 μM in control, versus 1.2 ± 0.4 or 0.9 ± 0.3 μM in aminoguanidine- or L-NMMA-treated cultures, respectively; P < 0.01), suggesting

FIG. 2. MTSA-10 binds to J774 cells and induces TNF-α secretion. (A) J774 cells were incubated with biotinylated MTSA-10 (25 μg/ml [grey line] or 50 μg/ml [thick black line]) and then stained with streptavidin-FITC, as described in Material and Methods. Alternatively, before incubation with biotinylated MTSA-10 (50 μg/ml) and subsequent streptavidin-FITC staining, cells were treated with unlabeled MTSA-10 (50 μg/ml) for 1 h (thin black line). Cells stained only with streptavidin-FITC were used as a control (dotted line). (B) J774 cells were incubated with different concentrations of MTSA-10. *, P of <0.01 compared to unstimulated cultures (B) or corresponding controls (C). (C) J774 cells were incubated with 50 μg of MTSA-10 per ml or 0.1 μg of LPS per ml in the presence or absence of 10 μg of polymyxin B (PMXB) per ml. (B and C) TNF-α accumulation was measured in cell culture supernatants after 24 h of incubation. Control values (C) were 172 pg/ml (MTSA-10) and 554 pg/ml (LPS).
that nitrite production was a consequence of a high-output L-arginine–NO pathway mediated by iNOS. The NO-inducing ability of MTSA-10 was heat stable, since it was preserved after 5 min of treatment in boiling water (data not shown). However, IFN-γ–MTSA-10-mediated induction of macrophage NO production was almost completely prevented upon MTSA-10 digestion with proteinase K (2 h at 50°C; proteinase K/MTSA-10 ratio, 1:20 [wt/wt]), thus further excluding the involvement of

FIG. 3. MTSA-10 pretreatment desensitizes J774 macrophages for subsequent NO production. J774 cells were pretreated with 50 μg of MTSA-10 per ml (A) or 0.1 μg of LPS per ml (B) for 18 h (MTSA-pre and LPS-pre). Afterwards, cells were washed several times with culture medium, rested for 2 h, and then were stimulated with *M. tuberculosis* cell lysate (MtbLys; 50 μg/ml) (A) or LPS (1 μg/ml) (A and B). Concentrations of nitrite, TNF-α, and IL-10 were measured in cell culture supernatants after 24 h of incubation. *, *P* of <0.01 compared to corresponding unstimulated cultures.
LPS (9.8 ± 0.3 μM in control culture versus 3.0 ± 0.4 μM in culture with proteinase K-treated MTSA-10; P < 0.01; after digestion of MTSA-10, proteinase K was inactivated by boiling; a corresponding amount of boiled proteinase K was added to the control culture). Finally, both NO and TNF-α were readily induced in J774 cells by HPLC-purified MTSA-10 (data not shown), confirming that these effects were not due to the presence of contaminating proteins.

Involvement of MAPK/ERK and PTK activity in MTSA-10 effects. Next, the intracellular signaling pathways responsible for MTSA-10 effects on J774 macrophages were investigated by using the protein kinase inhibitors genistein, SB203580, and U0126, which, respectively, block the activities of protein tyrosine kinases (PTK), p38 mitogen-activated protein kinase (MAPK), and p42/p44 MAPK/ERK (through inhibition of an upstream activator, MEK). Both MTSA-10-induced TNF-α release and MTSA-10–IFN-γ-triggered NO synthesis in J774 cells were suppressed in a dose-dependent fashion by all three protein kinase inhibitors (Fig. 5A and B). For NO production, cells were pretreated with IFN-γ and then challenged with MTSA-10, to avoid interference of the kinase inhibitors with IFN-γ signals. On the other hand, MTSA-10 desensitization of macrophages for LPS-induced NO release was partly but significantly prevented by interfering with p38 MAPK but not ERK or PTK activity during MTSA-10 pretreatment (Fig. 5C). The viability of the cells was not affected by any of the inhibitors used (data not shown).

MTSA-10 effects on primary macrophages. As previously observed with the J774 cell line, flow-cytometric analysis showed that MTSA-10 can also bind to the surfaces of BMMs, although to a lesser extent (Fig. 6A). Furthermore, MTSA-10 readily synergized with IFN-γ for induction of NO release in both BMMs and peritoneal macrophage cultures (Fig. 6B and C). The effect was fairly specific for MTSA-10, since a 19-kDa fragment of Plasmodium falciparum merozoite surface protein 1, similarly expressed as polyhistidine-tagged protein from the pQE vector and purified by Ni-NTA chromatography, failed to affect NO production in

FIG. 4. MTSA-10 and IFN-γ synergize for NO production in J774 cells. (A and B) After 18 h of preincubation with 50 μg of MTSA-10 per ml, J774 cells were washed several times, rested for 2 h, and then were stimulated with 100 U of IFN-γ per ml (A) or 50 μg of M. tuberculosis cell lystate (MtbLys) per ml (B), in the presence or absence of 10 U of IFN-γ per ml. (C and D) J774 cells were incubated with different concentrations of MTSA-10 (C) or IFN-γ (D), with or without 10 U of IFN-γ per ml (C) or 50 μg of MTSA-10 per ml (D). Nitrite accumulation was measured in cell culture supernatants after 24 h of incubation. Control values (B) were 5.9 μM (MtbLys) and 26.2 μM (MtbLys/IFN-γ) (the nitrite level in cultures stimulated with IFN-γ alone was <1 μM). *, P of <0.01 compared to corresponding unstimulated cultures (B) or MTSA-10 (D).
peritoneal macrophages (Fig. 6C). These data indicate that MTSA-10 might have the ability to influence the function of primary mouse macrophages.

DISCUSSION

The present study shows that MTSA-10, a secreted antigen of M. tuberculosis, can bind to the macrophage surface and

peritoneal macrophages (Fig. 6C). These data indicate that MTSA-10 might have the ability to influence the function of primary mouse macrophages.
induce TNF-α and NO release, by itself or in synergy with IFN-γ, respectively. However, pre-exposure to MTSA-10 desensitized macrophages for subsequent production of NO but not TNF-α or the anti-inflammatory cytokine IL-10. This ability of MTSA-10 to profoundly modulate macrophage function might be relevant for the immunopathogenesis of tuberculosis.

The role of TNF-α in tuberculosis is regarded as mainly beneficial, involving the recruitment of the immune cells necessary for sealing up infectious foci inside granulomas in mice (22). It is therefore conceivable that the stimulation of macrophage TNF-α release by MTSA-10 seen in the present study might contribute to induction of host protective immunity. A similar role has been previously proposed for TNF-α induction by another secreted antigen of M. tuberculosis, known as 85B or the 30-kDa α antigen (4). However, studies with human monocytes and alveolar macrophages have described promotion of the intracellular replication of bacilli by TNF-α (22). It is therefore conceivable that the stimulation of macrophage TNF-α secretion by MTSA-10, including MTSA-10, may also serve as an evasion mechanism for M. tuberculosis. Furthermore, MTSA-10 may also participate in sustained TNF-α secretion accompanying the persistence of mycobacteria in infected macrophages and leading to self-tissue destruction during progressive disease. Indeed, it has been recently shown that administration of mycobacterial antigens to mice with prior M. tuberculosis infection leads to exacerbation of lung pathology via TNF-α-induced inflammation (28).

A large body of evidence, including a higher susceptibility to infection in iNOS inhibitor-treated or iNOS knockout animals (11, 25), argues in favor of the proposed involvement of iNOS-derived NO in mycobacterial clearance in mice (10). Although more controversial in humans, the role of NO in mycobacterial killing is supported by in vitro studies with M. tuberculosis-infected human monocytes and alveolar macrophages (21, 33, 42). In the present study, MTSA-10 desensitized murine J774 macrophages for NO release triggered by subsequent exposure to LPS or lysed M. tuberculosis cells. If such a mechanism operates in vivo, it might reduce the ability of MTSA-10-preexposed macrophages to carry out NO-mediated killing of intracellular bacilli upon subsequent infection. MTSA-10 pretreatment did not affect macrophage TNF-α or IL-10 synthesis, indicating that desensitization for NO release did not result from altered production of these cytokines, which are known to induce and suppress iNOS activation, respectively (43). A different pattern of cytokine synthesis observed after MTSA-10 or LPS pretreatment also suggests that distinct mechanisms were used by these two agents for reprogramming the macrophage function.

A potent macrophage activator, IFN-γ, is a hallmark of an effective immune response in tuberculosis, with its protective action being mediated mainly through induction of mycobactericidal NO synthesis in macrophages (13, 19). In the present study, IFN-γ synergized with MTSA-10 for NO induction in J774 macrophages if applied before or simultaneously with MTSA-10. However, MTSA-10 and IFN-γ seem to trigger distinct intracellular events in macrophages, since the former induced TNF-α but no NO release, while the latter caused significant NO but only marginal TNF-α production (unpublished observation). Synergistic induction of NO synthesis by IFN-γ and MTSA-10 was probably a consequence of iNOS activation, as it was sensitive to aminoguanidine, an NOS inhibitor fairly selective for its inducible isoform (27). MTSA-10 did not stimulate macrophage NO release when administered before IFN-γ, but it also failed to suppress it, in contrast to a marked inhibition of macrophage response to LPS or M. tuberculosis lysate as a second stimulus. Moreover, the presence of IFN-γ during restimulation with the lysed mycobacteria almost completely blocked the down-regulation of macrophage NO production imparted by preincubation with MTSA-10. One could, therefore, envisage that the effect of MTSA-10 on macrophage NO release in tuberculosis would depend on IFN-γ, in the relative absence of which the inhibitory MTSA-10 action would prevail. On the other hand, the presence of IFN-γ at the time of macrophage infection could neutralize the desensitizing effect of the prior exposure to MTSA-10. Moreover, if present before or during macrophage recognition of MTSA-10, IFN-γ might completely overcome the inhibitory action of the former, by synergizing with it for NO release. As with TNF-α, the implications of such a modulation of macrophage NO production by MTSA-10 are not straightforward, due to the complex, “double-edged sword” nature of NO involvement in the pathogenesis of tuberculosis. In addition to being a major mycobactericidal molecule, NO might exert potentially detrimental effects through suppression of the antibiotic T-cell response (29). High-level NO production is also responsible for the apoptosis of macrophages infected with M. tuberculosis (34). Because it is secreted, MTSA-10 can contribute to iNOS induction and consequent apoptosis in uninfected macrophages as well, thus reducing the protective capacity of the host. Indeed, we have observed NO-dependent reduction of cellular respiration, assessed by the MTT assay, in macrophage cultures treated with a combination of MTSA-10 and IFN-γ (unpublished observation).

The activation of PTK as well as the serine/threonine kinases p38 MAPK and ERK (p42/44 MAPK) has been implicated in the induction of TNF-α and NO synthesis in macrophages stimulated with various microbial products (15, 17, 30, 35, 38). Our data indicate that these signaling pathways are also responsible for MTSA-10-triggered release of TNF-α and NO in J774 macrophages. Although the cells were preincubated with IFN-γ, which was washed away prior to NO induction with MTSA-10, we could not completely exclude the possibility that IFN-γ-dependent intracellular events contributing to NO release were also interrupted by the kinase inhibitors. However, the dependence of MTSA-10-induced TNF-α release on p38 MAPK, ERK, and PTK activity suggests that the same pathways may also control MTSA-10 induction of macrophage iNOS. This finding also indicates that MTSA-10–IFN-γ-induced NO release might be partly mediated through the autocrine-paracrine action of endogenous TNF-α, as previously reported for M. tuberculosis-infected macrophages (34). Interestingly, only p38 MAPK activity, not ERK or PTK activity, seems to be involved in MTSA-10-mediated desensitization of macrophages for LPS-stimulated NO production. The activation of p38 MAPK has been recently found to be responsible for the down-regulation of LPS-induced TNF-α release in rats previously exposed to sublethal hemorrhage (26). However, since MTSA-10 in the present study did not impair macrophage ability to secrete TNF-α in response to LPS, it appears...
that some other mechanisms besides p38 MAPK activation are involved in macrophage desensitization for TNF-α production.

The regulation of macrophage TNF-α and NO production in tuberculosis appears to be very complex, due to the ability of various mycobacterial cell wall components to stimulate the release of these inflammatory mediators (6, 32, 40). However, the secreted mycobacterial proteins, such as MTSA-10, might have the advantage in that respect, since their soluble nature might enable them to affect a wider population of macrophages. The presence of anti-MTSA-10 antibodies in the sera have the advantage in that respect, since their soluble nature might enable them to affect a wider population of macrophages. It remains for future studies, however, to explore whether the presented findings apply to human macrophages as well as to in vivo situations.

ACKNOWLEDGMENTS

The gift of M. tuberculosis whole-cell lysate from J. T. Belisle (Colorado State University and the NIH) is gratefully acknowledged. We also thank D. Salunke (National Institute of Immunology, New Delhi, India) for the HPLC purification of MTSA-10.

This work was partly supported by a grant from the Department of Biotechnology, Government of India. V.T. is an ICGBE postdoctoral fellow; G.S. is a recipient of a Junior Research Fellowship from the Council of Scientific and Industrial Research, New Delhi, India.

REFERENCES


20. Novogrodky, A., A. Vanichk, M. Patya, A. Gazi, N. Osherov, and A.


Editor: S. H. E. Kaufmann


