Autodisplay: Efficacious Surface Exposure of Antigenic UreA Fragments from *Helicobacter pylori* in *Salmonella* Vaccine Strains

Konstantin Rizos,† Claus T. Lattemann,² Dirk Bumann,² Thomas F. Meyer,²* and Toni Aebischer²

Creatogen AG, D-86156 Augsburg,¹ and Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, D-10117 Berlin,² Germany

Received 24 March 2003/Returned for modification 3 June 2003/Accepted 15 August 2003

Live attenuated *Salmonella* strains expressing antigens of pathogens are promising oral vaccine candidates. There is growing evidence that the topology of expression of the foreign antigens can have a dramatic impact on the immunogenicity. We examined the potential of the AIDA-I (*Escherichia coli* adhesin involved in diffuse adherence) autotransporter domain to display antigenic fragments of the urease A subunit of *Helicobacter pylori* for the induction of a protective immune response. In the murine *H. pylori* model, protection is mainly mediated by CD4⁺ T cells, and we therefore used the AIDA-I expression system to successfully express both nearly full-length UreA and defined T-helper-cell epitopes on the surface of an attenuated *Salmonella enterica* serovar Typhimurium vaccine strain. Surface exposure of the large UreA fragment or of one UreA T-cell epitope mediated a significant reduction in the level of *H. pylori* in immunized mice after challenge infection, whereas conventional cytoplasmic expression of UreA in *Salmonella* had no effect. These results support the concept that surface display increases the immunogenicity of recombinant antigens expressed on oral live vaccine carriers and further demonstrate the feasibility of immunizing against *H. pylori* with *Salmonella* vaccine strains expressing CD4⁺ T-cell epitopes.

The approach of using live *Salmonella* vaccine strains to deliver recombinant antigens has been generally accepted, and to date several clinical studies have been performed in this field. The results of these studies, although promising, imply that new attenuated strains and improved antigen expression are needed to enhance the immunogenicity of *Salmonella* vaccine strains (14).

The localization of expressed antigens in bacterial live oral vaccines seems to be very important (20), and therefore many efforts have been made to manipulate surface-exposed proteins to display antigenic determinants (for a review see reference 13). Recently, we observed that an attenuated *Salmonella* vaccine strain expressing a CD4⁺ T-cell epitope on its surface via the autotransporter domain of AIDA-I (an adhesin involved in diffuse adherence from *Escherichia coli* [3]) was able to induce a specific CD4⁺ T-cell response (30). These findings encouraged us to investigate whether the AIDA-I expression system is able to induce protective immune responses in an animal model of infectious disease in which protection is mainly mediated by CD4⁺ T cells. We therefore chose the murine *Helicobacter pylori* infection model, because immunity against this pathogen has been reported to depend mainly on CD4⁺ T-helper cells (11) and we confirmed this for mice vaccinated with recombinant *Salmonella* which was effective in IgH⁻/⁻ mice but not in major histocompatibility complex II gene-deficient mice (Aebischer, unpublished observations).

H. pylori is a gram-negative spiral bacterium that colonizes the human stomach and can cause a variety of diseases, including chronic gastritis, peptic ulcers, gastric adenocarcinoma, and gastric lymphoma (23, 41, 48). Vaccination would be a cost-effective means to control this public health problem faced by one-half of the world’s population. Expression of urease subunits A and B from *H. pylori* in recombinant attenuated *Salmonella* vaccine strains induced high levels of protection against an *H. pylori* challenge infection in vaccinated mice (8, 16, 34), and three clinical phase I studies have already been based on this approach (2, 5, 10). Recombinant UreB has been reported to confer protective immunity against *Helicobacter felis* in different mouse strains (12, 38), whereas variable results have been reported for the protective effects of UreA (12, 38).

In a recent study, spleen-derived oligoclonal CD4⁺ T-cell lines were isolated from BALB/c mice vaccinated with attenuated *Salmonella* expressing urease subunits A and B from *H. pylori* (35). The T cells recognized urease A and could be restimulated with peptides containing predicted H-2Kd-restricted CD4⁺ T-cell epitopes (amino acids 28 to 51, 74 to 90, or 209 to 225) (35). Furthermore, adoptive transfer of these T cells into naive mice partially protected against a *H. pylori* challenge.

In this study, we expressed translational fusions of a nearly full-length urease A variant or one of the three recognized urease A peptides to the C-terminal autotransporter domain of AIDA-I in attenuated *Salmonella* and tested these constructs for protective efficacy in the murine *Helicobacter* infection model.

MATERIALS AND METHODS

Bacterial strains. All of the bacterial strains employed in this study are listed in Table 1. For all purposes (except preparation of frozen stocks), *E. coli* and *Salmonella* strains were grown on Luria-Bertani (LB) agar plates or in liquid medium supplemented with ampicillin (100 µg/ml) and, in the case of recombinant *Salmonella*, with streptomycin (90 µg/ml). Thymine (50 µg/ml) was added when required. *H. pylori* P76 was grown on brain heart infusion (BHI) (Difco, Frankfurt am Main, Germany).
TABLE 1. Bacterial strains used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype or phenotype</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli JK321</td>
<td>azi-6 huA23 lacY1 leu-6 mit-1 proc14 purE14 rpsL109 thi-1 trpE38 ttx-67 Δ(ompT-cepC)</td>
<td>26</td>
</tr>
<tr>
<td>Crea283</td>
<td>S. enterica serovar Typhimurium SL361 ΔureA</td>
<td>Creatogen AG</td>
</tr>
<tr>
<td>Crea294</td>
<td>S. enterica serovar Typhimurium SL361 ΔureA ΔlytA</td>
<td>Creatogen AG</td>
</tr>
<tr>
<td>SL361(pYZ97)</td>
<td>S. enterica serovar Typhimurium SL361 expressing urease subunits A and B constitutively</td>
<td>16</td>
</tr>
<tr>
<td>H. pylori P76</td>
<td>Streptomycin-resistant derivative of the mouse-adapted H. pylori strain P49</td>
<td>16</td>
</tr>
</tbody>
</table>

* Modified as described by Hoiseth and Stocker (22).

Becton Dickinson, Sparks, Md.) serum agar plates (16) supplemented with streptomycin (20 μg/ml) at 37°C under microaerophilic conditions or in BH salts medium supplemented with 10% fetal calf serum (Gibco, Eggenstein, Germany) and 200 μg of streptomycin per ml with shaking at 37°C.

Genetic manipulations. *E. coli* JK321 (26) was used for all cloning procedures. Oligonucleotide sequences used for PCR and plasmid construction are shown in Table 2. For the in vivo experiments transcriptional fusions of AIDA-I and UreA were first constructed in plasmid pLAT238. Plasmid pLAT238 encodes the epitope tag PEYFK derived from the Nef protein from the human immunodeficiency virus fused to a modified cholera toxin B subunit (CTB) gene, followed by the sequence encoding the autotransporter domain of AIDA-I, and it contains a single BglII restriction site between the Nef tag and the signal peptide sequence of CTB (30). Expression of the fusion in pLAT238 is transcriptionally controlled by the constitutive PpgC promoter (25). Translocation into the periplasm of this fusion protein is mediated by the leader peptide of CTB. The DNA fragments encoding UreA27-238, UreA240-250, and UreA209-230 were amplified with primers LAT68 and LAT198 and treated with BglII and SalI, and inserted into the ClaI/Sall-digested vector pJM7. The ureA gene amplified from pYZ97 with primers LAT70 and MSC4 was inserted into the single BglII and Acc65I sites of the new multiple cloning site. The ureA fragment was transferred from this vector by digestion with XbaI and SalI to obtain plasmid pUCrea, which mediated ureA expression by the PpgC promoter. The identities of the constructs were verified by dideoxy chain termination sequencing (4base lab GmbH, Reutlingen, Germany). The final plasmids are shown in Fig. 1.

Animals. Specific-pathogen-free female BALB/c mice that were 6 to 8 weeks old were obtained from the Bundesamt für Gesundheitlichen Verbraucherschutz (Berlin, Germany) and were kept under conditions that were in full compliance with German guidelines for animal care. All experiments were approved by the local animal welfare committee.

Preparation of frozen stocks. Starting from a single colony, each Salmonella vaccine strain was grown on LB agar plates overnight at 37°C. The organisms were harvested on the following day in fresh LB medium, the suspension was used to inoculate culture medium (LB medium containing 90 μg of ampicillin per ml with or without 100 μg of ampicillin per ml) to obtain an optical density at 600 nm (OD600) of 0.1, and the culture was incubated overnight at 28°C and 200 rpm. The culture was harvested and resuspended in a 70% LB medium–30% glycerol mixture at an OD600 of 7 and stored at –80°C. The number of CFU per milliliter in each batch was determined by plating serial dilutions on selective LB agar plates.

TABLE 2. Oligonucleotides used in this study

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Sequence (5' → 3')</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>JM54</td>
<td>GATCTCTCTGATAATTTCAGGATCCAACCTTACCCTCAC</td>
<td>Linker encoding PEYFK, sense</td>
</tr>
<tr>
<td>JM55</td>
<td>GATCGTGAGGAGGTTGGACCTTGGAATATTTGAGGA</td>
<td>Linker encoding PEYFK, antisense</td>
</tr>
<tr>
<td>LAT61</td>
<td>GATCGGATCCCTTTTTTACAGCTTCCG</td>
<td>UreA227-238, antisense, BamHI site</td>
</tr>
<tr>
<td>LAT68</td>
<td>GATCGGATCCCGATATAGGTTAATCCTATAG</td>
<td>UreA27-250, sense, BamHI site</td>
</tr>
<tr>
<td>LAT70</td>
<td>GATCGGATCTTACATAGGTTAATCCTATAG</td>
<td>Urea, sense, BglII site</td>
</tr>
<tr>
<td>LAT74</td>
<td>GATCGGATCTTACATAGGTTAATCCTATAG</td>
<td>pRSETb, T7 promoter, sense, HpaII site</td>
</tr>
<tr>
<td>LAT75</td>
<td>GATCGGATCTTACATAGGTTAATCCTATAG</td>
<td>pRSETb, multiple cloning site downstream, antisense, SalI site</td>
</tr>
<tr>
<td>LAT181</td>
<td>GATCGGATCTGTTGGAAGGATGATCCATAG</td>
<td>Urea240-250, sense, BamHI site</td>
</tr>
<tr>
<td>LAT182</td>
<td>GATCGGATCTGTTGGAAGGATGATCCATAG</td>
<td>Urea240-250, sense, BamHI site</td>
</tr>
<tr>
<td>LAT183</td>
<td>GATCGGATCCCTTTTGCGCATGAAACGACCCAAC</td>
<td>Urea240-250, sense, BamHI site</td>
</tr>
<tr>
<td>LAT198</td>
<td>TCCCGATTTAACCTGGCCACCCAAC</td>
<td>AIDA, antisense</td>
</tr>
<tr>
<td>LAT212</td>
<td>AAGGCCCTGCTAGAAGTTAACCACCAAGGCTAGGCTTG</td>
<td>pEG6, sense</td>
</tr>
<tr>
<td>LAT220</td>
<td>GATCGGATCTTACATAGGTTAATCCTATAG</td>
<td>Urea, antisense, BglII site</td>
</tr>
<tr>
<td>MSC04</td>
<td>GATCGGATCTTACATAGGTTAATCCTATAG</td>
<td>Urea, antisense, Acc65I site</td>
</tr>
</tbody>
</table>

* See reference 36.

a The *Bam*HI site is underlined.

b The *Bgl*II site is underlined.

c The *Hpa*II site is underlined.

d The *Sal*I site is underlined.

e The *Acc*65I site is underlined.
Immunization experiments. Prior to oral immunization mice were left overnight without food. Salmonella stocks were thawed, diluted with a 70% LB medium-30% glycerol mixture to obtain a concentration of 1 x 10^9 CFU/ml, and then diluted 1:2 with 100 mM NaHCO₃ to obtain a concentration of 0.5 x 10^8 CFU/ml. The number of CFU per milliliter was correlated with 1/H₁₅₀₀₃ and this was followed by administration of 100 H. pylori water prior to challenge. After 3 days the organisms were harvested in 3 ml of BHI medium, culture stocks were thawed, diluted with a 70% LB medium containing 1 g of streptomycin per ml at 37°C for 30 min at room temperature. Scanning densitometric analyses of immunoblots were performed by using the freely available Scion Image software (http://www.scioncorp.com).

Surface exposure of AIDA-I fusion proteins. Bacteria were grown overnight on LB agar plates at 37°C and harvested in PBS the following day. The OD₅₉₀ of the bacterial suspension was adjusted to 1.0, and surface-exposed protein domains were proteolytically cleaved off by incubation of the suspension at 37°C for 10 min with trypsin (50 μg/ml). Cells were washed twice in PBS with gentle centrifugation in order to remove residual trypsin and were subjected subsequently to SDS-PAGE analysis.

Preparation of outer membranes. Bacterial outer membranes were prepared as described elsewhere (31), with slight modifications. Bacteria grown overnight were harvested from agar plates and resuspended in PBS as described above. The suspension was sonicated with 30 1-s pulses at the maximum intensity by using a Branson Sonifier. Intact cells and large bacterial fragments were separated by centrifugation at 5,000 x g for 5 min. The cleared lysate was supplemented with 1 lauryl sarcosinate (Sigma, Deisenhofen, Germany) at a final concentration of 1% to solubilize the inner membrane. Subsequently, the outer membrane was separated from the cytoplasm, periplasm, and inner membrane by centrifugation at 20,000 x g for 30 min at room temperature.

Statistical analysis. Statistical analysis was performed by using the GraphPad Prism program (version 3.0; GraphPad Software, San Diego, Calif.). The level of significance used was P < 0.05.

RESULTS

Construction of Salmonella vaccine strains displaying UreA fragments on the cell surface. The autotransporter domain of AIDA-I adhesin has been used in several studies to target epitopes, CTB, and β-lactamase to the surface of E. coli cells (29, 31, 36). In this study, we used AIDA-I to target H. pylori UreA epitopes fused to the surface of an attenuated Salmonella vaccine strain. The UreA epitopes UreA 27-53, UreA 74-95, and UreA 209-230 were translationally fused to the N terminus of a fusion protein of the AIDA-I autotransporter domain and CTB, whereas a large UreA 27-238 fragment was translationally fused to the N terminus of the AIDA-I autotransporter domain without CTB but contained an HA tag sequence separating UreA 27-238 and AIDA-I. Plasmids psdUreA 27-53, psdUreA 74-95, psdUreA 209-230 and psdUreA 27-238 are shown in Fig. 1. Intermediate constructs contained the transcriptonal fusions under control of the constitutive PTK promoter (25), which were electroporated into an araA Salmonella carrier strain for biochemical localization of the products (see below). For in vivo studies, the thyA gene coding for thymidilate synthase was also included in the plasmid backbone of the final constructs (Fig. 1) for plasmid stabilization purposes (39). The Salmonella vaccine strain Crea1294, which contained a chromosomal deletion of the thyA gene and was derived from the araA-deficient strain Crea1283 (unpublished data), was transformed with the corresponding plasmids. Complete UreA was
expressed from the P\text{pgc} promoter (pcUreA) as a cytoplasmic antigen localization control (Fig. 1).

Localization of AIDA-I fusion proteins in the outer membrane. Autotransporter proteins localize to the outer membrane of gram-negative bacteria. To evaluate expression and outer membrane targeting of the various UreA fusion proteins in the attenuated *S. enterica* serovar Typhimurium *aroA* strains, outer membrane fractions from the *Salmonella* strains were analyzed by SDS-PAGE and Western blotting by using a monoclonal antibody to HA or a polyclonal antibody to cholera toxin (Fig. 2). All AIDA-I fusion proteins were detected in the outer membrane fraction. Decreased expression of the UreA_{27-238}–AIDA-I fusion protein compared to the expression of AIDA-I without UreA_{27-238} was detected, and we also detected some degradation which might have been caused by partial proteolysis in the periplasm or at the outer membrane. This partial proteolysis most likely affected the UreA part of the fusion protein, since the degradation products were recognized by the HA antibody and remained membrane associated.

Surface localization of proteins can be investigated by trypsin treatment of intact cells, because surface-exposed protein structures that are sensitive to trypsin are cleaved off during exposure to the protease, whereas cytoplasmic, periplasmic, or protein domains embedded in the outer membrane are not affected (31, 37). This method is therefore suitable for monitoring the surface exposure of passenger domains fused to autotransporters. Physiologically intact cells, expressing the various AIDA-I fusions proteins, were subjected to trypsin digestion or were left untreated. In cells treated with trypsin UreA–AIDA-I fusion proteins were undetectable in immunoblot analyses of whole-cell lysates but were present in untreated control cells (Fig. 3). As only surface-exposed proteins were accessible to trypsin under these conditions, the results corroborated the localization data obtained by cell fractionation (Fig. 2) and further demonstrated that the vast majority of the fusion proteins were surface exposed.

Immunization with *Salmonella* expressing UreA_{27-238}–AIDA-I protects mice against an *H. pylori* challenge. In order to analyze the vaccine potential of *aroA*-attenuated *Salmonella* expressing either cytoplasmic UreA [Crea1294(pcUreA)] or surface-exposed UreA_{27-238}–AIDA-I fusion protein [Crea1294(psdUreA_{27-238})], protein expression was first compared in the corresponding vaccine strains. The UreA levels expressed under in vitro conditions were assessed by immunoblot analysis by using a *Helicobacter*-specific antiserum raised in rabbits (Fig. 4). The level of UreA expression was higher in the strain expressing UreA in the cytoplasm, Crea1294(pcUreA) (603 arbitrary staining intensity units), than in Crea1294(psdU-
reA₂₇₋₂₃₈) (150 arbitrary staining intensity units). For reference, UreA expression in our standard vaccine strain, SL3261 (pYZ97) expressing both UreA and UreB subunits (16), was also analyzed, and the level of UreA expression in this strain was 829 optical density units.

A second important parameter of live vaccine strains is the relative ability to colonize the host. To estimate the bacterial fitness, groups of three BALB/c mice were inoculated orally with single intragastric doses of 10⁹ CFU of either Crea₁₂₉₄(psdUreA₂₇₋₂₃₈), Crea₁₂₉₄(pcUreA), the plasmidless carrier strain, or the positive control strain SL3261(pYZ97) (16). Bacterial loads were compared on day 7, when SL3261 colonization usually reached peak levels. The new UreA-expressing strains Crea₁₂₉₄(pcUreA) and Crea₁₂₉₄(psdUreA₂₇₋₂₃₈) showed reduced colonization of the Peyer’s patches on day 7 postimmunization (2.2 x 10⁴ ± 4.3 x 10² and 3.9 x 10⁴ ± 2.4 x 10² CFU, respectively) compared to the colonization by the plasmidless strain (6.6 x 10⁴ ± 1.1 x 10⁴ CFU) and the control strain, SL3261(pYZ97) (7.5 x 10⁵ ± 6.1 x 10³ CFU) (Fig. 5A). However, for the present study it was important that the new vaccine strains expressed comparable amounts of UreA and had similar colonization capabilities.

To determine vaccine efficacy, the four different strains [the carrier control, positive control SL3261(pYZ97), cytoplasmic UreA, and surface-exposed UreA strains] were orally administered to mice, and 4 weeks later the mice were challenged with 1 x 10⁷ CFU of <i>H. pylori</i>. Three weeks after the challenge infection, mice were sacrificed, and the <i>H. pylori</i> burden in the stomach was determined. Vaccination with the <i>Salmonella</i> strain expressing UreA at the cell surface resulted in significantly reduced <i>H. pylori</i> colonization compared to the colonization of the carrier-immunized control group (<i>P</i> = 0.0089, as determined by the Student t test) (Fig. 5B). In contrast, the <i>Salmonella</i> strain expressing cytoplasmic UreA failed to induce a significant reduction in the <i>H. pylori</i> burden compared to the burden observed after administration of the carrier strain control, although the bacterial counts were lower on average.

<i>Salmonella</i> sp. expressing a UreA₂₇₋₅₃ peptide on the surface partially protects against <i>H. pylori</i>. In a recent study, Lucas et al. identified three peptides of the UreA protein that contain T-cell epitopes recognized by protective UreA-specific CD4⁺ T cells (35). In the present study, we fused these peptides to AIDA-I to evaluate its potential as a T-cell epitope expression platform. All peptide fusion proteins were similarly expressed by the attenuated <i>Salmonella</i> araA strain (Fig. 6), and the colonization capabilities of the constructs were comparable.

Mice were vaccinated with the three constructs or a negative control strain expressing AIDA-I without a fused UreA pep-
tide and challenged with *H. pylori* as described above. While *Salmonella* strains expressing UreA_{27-53} and UreA_{209-230} had no protective effect, the UreA_{27-53} construct induced a significant reduction in the *H. pylori* burden compared to the burden observed with the *Salmonella* negative control strain (Fig. 7) \((P = 0.03\), as determined by the Student *t* test).}

DISCUSSION

Recombinant attenuated *Salmonella* strains are promising vaccine carriers for oral delivery of heterologous antigens. For example, we and other workers have previously shown that immunization with *Salmonella* strains expressing *H. pylori* ureases A and B can protect mice against a subsequent *Helicobacter* challenge infection (16).

In a number of experimental models, *Salmonella* vaccine efficacy can be enhanced by surface display or secretion of the foreign antigen. Autotransporter domains of gram-negative bacteria can be used as one such surface display system (27–29, 31, 36, 45). Autotransporters are widespread among gram-negative bacteria, and their main physiological function is to translocate virulence factors through the cell envelope to the surface (19). The fact that they are expressed as a single polypeptide chain containing all features necessary to translocate an N-terminal passenger domain to the cell surface (25) makes them attractive candidates for antigen display. Furthermore, functional B-cell epitopes (42) and T-cell epitopes (29, 30) have already been successfully expressed as autotransporter...
fusion proteins. In this study, we tested if Salmonella surface display of urease A or urease A fragments that contain T-cell epitopes (35) by using the AIDA-I autotransporter provides better anti-H. pylori protection than an otherwise identical cytoplasmic UreA construct provides. A nearly full-length variant of UreA, as well as three different UreA peptides, could be expressed as AIDA-I fusion proteins and were displayed on the surface of attenuated Salmonella cells. The nearly full-length variant encoded on psdUreA27-238 lacks the N terminus (amino acids 1 to 26), which contains six lysine residues, to avoid potential inhibition of translocation across the inner membrane by the Sec pathway (1). Inhibition of translocation was noted when the full-length UreA was introduced into E. coli or Salmonella (Lattemann, unpublished observations).

In the murine H. pylori infection model a significant reduction in the H. pylori burden was detected in mice vaccinated with a Salmonella strain expressing either the almost complete UreA protein [Crea1294(psdUreA27-238)] or the T-cell epitope containing peptide UreA27-53 [Crea1294(psdUreA27-53)] as an AIDA-I fusion protein. The results obtained with the latter strain also provided independent functional confirmation that there is at least one protective epitope in UreA, which has been suggested previously by Lucas and coworkers, who identified the UreA fragments mentioned above as CD4+/H11001 T-cell epitope-containing regions (35). Additionally, this study demonstrated the feasibility of immunizing against H. pylori with Salmonella vaccine strains expressing CD4+ T-cell epitopes on the cell surface. In contrast, the H. pylori burdens in mice vaccinated with a Salmonella strain conventionally expressing UreA in the cytoplasm [Crea1294(pUCreA)] were not significantly reduced compared to the burdens in mice vaccinated with the carrier strain.

CD4+ T-cell induction is directly correlated with the number of Salmonella cells colonizing the Peyer’s patches on the first few days after vaccination (4). For comparing various Salmonella vaccine constructs, it is thus important to determine the corresponding colonization capabilities. The two vaccine

![FIG. 6. Expression of UreA CD4+ T-cell epitopes by Salmonella vaccine strains.](image)

![FIG. 7. In vivo colonization and protective efficacy of Crea1294 expressing UreA CD4+ T-cell epitopes on the cell surface.](image)
strains expressing cytoplasmic and surface-displayed urease A showed similar colonization levels in Peyer’s patches of immunized mice. This suggests that other factors and probably the different localizations account for the different vaccination efficacies of the two strains. Superior antigen processing of surface antigens by antigen-presenting cells and/or an altered urease A conformation might be involved, but further studies are required to test these hypotheses. Improvement of the urease A–AIDA-I fusion protein-expressing strains is, however, still needed, and this should be possible by increasing Salmonella fitness in vivo. Our standard laboratory vaccine strain, strain SL3261(pYZ97), colonized at least 10-fold better and expressed UreA as well as UreB subunits. Both of these aspects, increased fitness and expression of two vaccine antigens, are likely to be responsible for the superior efficacy of this strain. Therefore, in addition to improvement of the fitness of carriers by modulating the level of expression of the AIDA-I fusions, addition of immunogenic epitopes from other antigens to the existing constructs and prime-boost regimens are potential ways to increase the efficacy of the new strains, which, as reported here, indicates that AIDA-I is an attractive candidate for the development of live vaccines against H. pylori.

Several other approaches have been used to develop expression systems that are alternatives to the conventional somatic expression of antigens for the induction of cellular immune responses (13, 20, 44). These include secretion of antigens into the surrounding environment (13, 20) or into the cytoplasm of the host cell (44). Salmonella vaccine strains endowed with the α-hemolysin secretion apparatus of E. coli in trans were able to secrete full-length antigens and were efficacious in several animal models (15). The type III secretion system encoded on the SPI-1 pathogenicity island of S. enterica serovar Typhimurium has also been successfully used in Salmonella live vaccine carriers to translocate major histocompatibility complex I-restricted epitopes fused to the N terminus of YopE, a secreted effector protein of Yersinia enterocolitica, into host cells, resulting in protective immune responses (43, 44).

Humoral immune responses have been observed after vaccination of mice with attenuated Salmonella strains with immunogenic determinants exposed on their surfaces by means of outer membrane proteins from E. coli, like OmpA (17), PhoE (24, 47), LamB (6, 18, 32), and P87 fimbiae (7), the ice-nucleating protein from Pseudomonas aeruginosa (33), the main flagellar component FlIC from Salmonella (9, 40, 40), or the Salmonella autotransporter MisL (42). Recently, use of E. coli outer membrane protein TolC for surface display of protective listerial B- and T-cell epitopes in a Salmonella vaccine strain has been shown to be efficacious in vivo (46).

In summary, autotransporters facilitate effective surface display of antigenic determinants on live Salmonella vaccine carriers, leading to humoral (42) and cellular immune responses in vivo (29). This study demonstrated that surface display of a Helicobacter antigen via the AIDA-I autotransporter can induce protective immune responses.

ACKNOWLEDGMENTS

We thank Elke Gerland, Kirstin Hoffmann, and Kerstin Burmeister for excellent technical assistance.

This work was supported in part by grants from the BMBF (grants PTJ-BIO/0312178 and G01IH1-1/3-V11ZV-17) and from DFG Novel Vaccination Strategies priority program (grant Bu 971/4-2).

REFERENCES

typhimurium are non-virulent and effective as live vaccines. Nature 291:238–239.