Immunopathogenesis of Pulmonary Granulomas in the Guinea Pig after Infection with *Mycobacterium tuberculosis*

Oliver C. Turner, Randall J. Basaraba, and Ian M. Orme*

*Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523*

Received 4 April 2002/Returned for modification 12 September 2002/Accepted 31 October 2002

Pulmonary tuberculosis in guinea pigs is similar to the disease in humans and is accordingly widely used as a model to test tuberculosis vaccines. The primary site of expression of acquired immunity and the hallmark of tuberculosis is the granuloma. Granuloma morphology is well described, but there is limited information regarding T-cell subset influx. We monitored the course of pulmonary tuberculosis in guinea pigs and observed four distinct immunohistopathological stages. In all stages there were similar numbers and arrangement of CD4 and CD8 T cells. There were only small numbers of apoptotic lymphocytes, scattered around and within the necrotic core, and acid-fast bacilli were visible both within macrophages and free within airway debris. A key finding of the study was the observation that the development of the necrotic core was an early event and almost certainly preceded the emergence of the acquired immune response. This in turn suggests that innate mechanisms are the basis of the early lesions and that subsequent acquired responses are unable to moderate them. This hypothesis differs from the current dogma that excessive activity of T cells mediates delayed-type hypersensitivity and that cellular cytolysis is the root cause of the necrosis.

*Corresponding author. Mailing address: Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523. Phone: (970) 491-5777. Fax: (970) 491-5125. Email: iorme@lamar.colostate.edu.*
Materials and Methods

Animals. Female Hartley guinea pigs were obtained from Charles River Laboratories (Wilmington, Mass.). They were housed under biosafety level III conditions at Colorado State University and fed standard guinea pig chow and water ad libitum. After infection, the animals were assessed using a modified Karnofsky scale (20) for pain and distress in guinea pigs.

Bacterial infections. M. tuberculosis Erdman (TMCC 107) was previously grown to early mid-log phase from low-passage seed lots in Proskauer-Beck liquid medium containing 0.05% Tween 80. Cultures were aliquoted into 1-ml tubes and frozen at ~70°C until used. Thawed aliquots were diluted in double-distilled sterile water to the desired inoculum concentrations. Guinea pigs were infected via the aerosol route with a low dose of bacteria. Briefly, the nebulizer compartment of a Middlebrook airborne-infection apparatus (Glas-Col, Terre Haute, Ind.) was filled with 5 ml of distilled water containing a suspension of bacteria known to deliver approximately 20 to 50 bacteria into the lungs.

Enumeration of bacteria. Groups of two guinea pigs were killed humanely at 11, 21, 31, 71, and 93 days after aerosol infection with M. tuberculosis strain Erdman. Only one animal survived to and was examined at 99 days postinfection. At necropsy, all lung lobes were removed from the thorax individually to enable separate manipulations with each lobe. The number of viable bacteria in the lungs was monitored over time by plating serial 10-fold dilutions of right cranial lung lobe homogenates onto nutrient Middlebrook 7H11 agar. The bacterial colony-forming units were counted after 21 days of incubation at 37°C under 5% CO2. The data were expressed as the log10 of the mean number of bacteria recovered.

Histological testing. The right middle lung lobe was first slowly infused through the major vessels at the hilus with 10% neutral buffered formalin. This was to prevent alveolar collapse and assist in morphometry. The lobe was then submersed in the formalin. After a minimum of 48 h, the tissue was prepared and sectioned for light microscopy, with lobe orientation designed to allow the maximum surface area to be seen. Consecutive sections were stained with hematoxylin and eosin and with Ziehl-Neelsen stain for the detection of acid-fast bacilli. Sections were also stained by the Masson trichrome method for the detection of collagen and by the Fraser-Lendrum method for the detection of fibrin (23). Sections were examined by a veterinary pathologist who had no prior knowledge of the experimental groups and were evaluated at least twice to verify the reproducibility of the observations.

Immunohistochemistry. Mouse anti-guinea pig monoclonal antibodies specific for guinea pig CD4 (clone CT7) and CD8 (clone CT6) were purchased from Serotec (Oxford, England). In each case, the Serotec mouse immunoglobulin G1 (IgG1)-negative control (clone W3/25) was used as the isotype control. F(ab')2 rabbit anti-mouse Ig-biotin, also from Serotec was used as the secondary antibody. At necropsy, the left cranial lung lobe was first slowly infused with a 20% OCT (Tissue-Tek Inc., Torrance, Calif.; Calbiogel, American Biotech Laboratories, Loveland, Colo.; or Tissue-Tek, Inc., Torrance, Calif.) and primary antibody for 30 min. The sections were then placed in a tissue mold, completely surrounded by OCT, frozen in a bath of liquid nitrogen, and stored at ~70°C until used. Serial sections from each lung, 5-μm thick, were cut in a cryostate (CM 1850; Leica, Bannockburn, Ill.) by employing the Instrumented Inc. (Hackensack, N.J.) tape transfer system, fixed in cold acetone for 5 to 10 min, and then air dried. The sections were washed in APK buffer solution (Vetana Medical Systems, Tucson, Ariz.) for 15 to 20 min and incubated in a 1:50 (CD4) or 1:100 (CD8) solution of Protein Block goat serum (Biogenex, San Ramon, Calif.) and primary antibody for 30 min. The sections were then placed on a Nexus automated immunostainer (Ventana Medical Systems). The labeled avidin-alkaline phosphatase and Fast red/naphthol detection kit was employed. The secondary antibody was incubated for 30 min at room temperature. Sections were counterstained with Meyer's hematoxylin. Sections of spleen were also examined to act as positive controls.

Detection of apoptosis. The ApoTag Plus peroxidase in situ apoptosis detection kit (Intergen, Purchase, N.Y.) was used to detect apoptotic cells in paraffin-embedded tissue. Two or three 5-μm sections of the same tissue used for histological analysis were analyzed per time point.

Photomicroscopy and morphometry. Photomicroscopy was performed with an Olympus AH-2 microscope linked to a Sony SCK-DKS digital camera and Adobe Photoshop 6.0 software. In an attempt to further classify the pulmonary lesions, the granuloma fraction was calculated from each of the hematoxylin-and-eosin-stained histological slides. In brief, using Metamorph software (Metamorph software, Universal Imaging Corp.), the perceived inflammatory area was determined by outlining the affected tissue on the captured images and expressing this as a percentage of the total area of the observed lung tissue.

Results

Course of M. tuberculosis infection in the lungs of infected guinea pigs. The course of the infection after aerosol exposure is shown in Fig. 1. As anticipated, the infection increased progressively for the first 3 weeks and then stabilized into an apparent chronic state of disease. In the later stages of the experiment, there was evidence of an increase in the bacterial load, consistent with the worsening pathological condition described below.

Distinct cell populations are seen in guinea pig lung granulomas after aerosol infection with M. tuberculosis. The lesions that formed in response to the M. tuberculosis infection over time could generally be resolved into four histological stages, which are summarized in Table 1. Examples of each stage are shown in Fig. 2. Detailed descriptions of the four stages are listed below.

(i) Stage 1. By 11 days after infection, small (up to approximately 500 μm in diameter), discrete, round lesions composed of tight accumulations of epithelioid macrophages admixed with granulocytes could be seen (Fig. 2A and B). These cells have distinct eosinophilic cytoplasmic granules and are sometimes referred to as pseudoeosinophils (28). Similar numbers of lymphocytes were also present. The lesions were most commonly seen in the parenchyma, close to major airways and blood vessels, effacing and expanding alveolar septa.

(ii) Stage 2. In stage 2 (Fig. 2C and D), at 21 days postinfection, scattered discrete, round lesions with a similar distribution to those in stage 1 infection were seen. The diameter of each lesion was substantially increased (up to approximately 1 mm). While epithelioid macrophages made up the bulk of these foci, neutrophils and lymphocytes were also seen scattered throughout the lesion except in the central core. Occasionally, a thin band of lymphocytes was visible at the margin of the granuloma. The core of these lesions was characterized by a small but distinct accumulation of karyorrhectic debris admixed with a fibrillar eosinophilic material. Similar eosinophilic deposits were present randomly within the tight aggregate of cells surrounding the core. Additionally, granuloma-
FIG. 2. Representative photomicrographs of the four stages of pulmonary granuloma development. (A) Stage 1 granuloma (day 11). A single discrete round focus of macrophages admixed with granulocytes and small numbers of lymphocytes adjacent to a large blood vessel and airway. 

a, artery; b, bronchiole; ca, cartilage. Bar, 100 μm. (B) Stage 1 granuloma; area delineated by the black rectangle in panel A. Note the abundance of granulocytes (arrows) intermixed with epithelioid macrophages and the lack of normal alveolar structure. Bar, 10 μm. (C) Stage 2 granuloma (day 21). A single discrete round focus of macrophages with an eosinophilic necrotic core (c) abutting a bronchiole (b). Bar, 100 μm. (D) Stage 2 granuloma; area delineated by the black rectangle in panel C. Note the abundance of neutrophils (arrows) intermixed with epithelioid macrophages and lymphocytes. Karyorrhectic debris is present in and around the core (c), and there are multiple small scattered islands of fibrin (*). Bar, 10 μm. (E) Stage 3 granuloma (day 31). A discrete round lesion with a distinct necrotic core (c) is surrounded by a layer of epithelioid and...
TABLE 1. Four-stage categorization of the pulmonary lesions in infected guinea pigs

<table>
<thead>
<tr>
<th>Lesion stage</th>
<th>Extent of lesions (% GF)</th>
<th>Macrophage types</th>
<th>Lymphocyte organization</th>
<th>Granulocyte localization</th>
<th>Stage sequelae</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single (11: 0.1, 0.1)</td>
<td>Histiocytes, epithelioid</td>
<td>Few, scattered</td>
<td>Prominent, scattered</td>
<td>Alveolitis</td>
</tr>
<tr>
<td>2</td>
<td>Multifocal (21: 4.9, 19.1; 31: 7.1, 16.7)</td>
<td>Histiocytes, epithelioid</td>
<td>Few, scattered, with small aggregates at margin</td>
<td>Prominent, scattered around and in the core</td>
<td>Karyorrhectic debris, fibrin deposition in the core and surrounding mantle; fibroplasia; granulomatous lymphadenitis</td>
</tr>
<tr>
<td>3</td>
<td>Multifocal (71: 45.7, 51.8)</td>
<td>Epithelioid, foamy</td>
<td>Scattered plus a prominent halo surrounding macrophages</td>
<td>Prominent, scattered around and in the core</td>
<td>“Classical” granuloma; necrosis and fibroplasia; granulomatous lymphadenitis</td>
</tr>
<tr>
<td>4</td>
<td>Coalescing (93: 42.9, 52.1; 99: 56.1)</td>
<td>Epithelioid, foamy</td>
<td>Scattered aggregates or individual cells</td>
<td>Prominent, scattered throughout macrophage focus, around and in the core, and amid airway debris</td>
<td>Necrosis, mineralization, marked fibroplasia; multinucleated giant cells; airway epithelium erosion and purulent airway exudate; granulomatous lymphadenitis</td>
</tr>
</tbody>
</table>

*Bold values represent days postinfection. Values following these are percent granuloma fractions (GF) from individual animals.*

foamy macrophages. This in turn is surrounded by a prominent basophilic layer of lymphocytes (+), which are admixed with macrophages at the extreme margins of the lesion. A bronchiol (b) is present at one margin. Bar, 100 μm. (F) Stage 3 granuloma; area delineated by the black rectangle in panel E. Note the karyorrhectic debris in and around the core area to the right (c). The dense sheet of epithelioid and foamy macrophages infiltrated by neutrophils surrounding it, and (on the left) a region rich in lymphocytes, between which there is considerable collagen deposition (arrow). Bar, 10 μm. (G) Stage 4 granuloma; area of the lesion showing a longitudinal section of a bronchiol (b) which is blocked with neutrophilic and necrotic debris (arrows) filling the lumen. Dense sheets of macrophages with scattered lymphocytes and interweaving fibrosis (f) surround the airway. Bar, 100 μm. All sections are stained with hematoxylin and eosin.
FIG. 3. Representative photomicrographs showing immunohistochemical staining for CD4^+ (left panels) and CD8^+ (right panels) T cells within the four stages of pulmonary granuloma formation: stage 1 (A and B), stage 2 (C and D), stage 3 (E and F), and stage 4 (G and H). For the top four panels, the scale bar represents 10 μm; for the bottom four panels the scale bar represents 100 μm. c, necrotic core. Arrows indicate individual positive cells. Labeled avidin-alkaline phosphatase with the naphthol red method was used for all sections, and hematoxylin counterstain was used. CD4^+ T cells were stained with Serotec clone CT7, and CD8^+ T cells were stained with Serotec clone CT6. Biotin-labeled F(ab')2 rabbit anti-mouse Ig was used as the secondary antibody.
fi
brin deposits were spread throughout the granulomas, as well as prominently focused around the core.

By day 93, the structure was dominated by thick bands of collagen deposition, forming a thick web that appeared to trap large numbers of foamy macrophages in addition to completely surrounding the mineralized core (Fig. 2G). In contrast, fibrin deposition was rarely seen at this stage.

Distribution of apoptotic cells. It has been suggested that apoptosis of infected cells may be a major defense mechanism against M. tuberculosis. As shown in Fig. 4, very few apoptotic cells could be detected at any of the four stages of the disease process. On days 11 through 31, some apoptotic cells could be seen close to the developing core lesion, but later during the course of the infection, only a few cells stained positive for apoptosis and appeared to be randomly distributed.

DISCUSSION

The guinea pig is widely considered the consummate animal model of human tuberculosis, given the similarities in the pathological responses to pulmonary infection; as a result, it is an important tool in the search for new vaccines. The results shown here are the first attempt to provide a comprehensive description of the stages of the disease in concert with immunohistochemical analysis documenting the influx of CD4+ and CD8+ T cells into the developing lesions. In several subse-
quent experiments, it was shown that this progression was evident and reproducible. The results of these studies raise a variety of issues that challenge the current dogma.

The current dogma to explain the pathological process in the guinea pig and rabbit is based on the historic studies by Lurie and more recently by Dannenberg (8–11). In that model, it is held that the initial presence of the bacilli causes no detectable tissue damage at first. Then, as cell-mediated immunity is triggered, “excessive delayed-type hypersensitivity” mediating the cellular influx and inflammation, in concert with cytolytic T-cell activity, leads to the necrotic degeneration of the center of the lesion. It was further proposed that the development of this caseous necrosis initially limits the growth of extracellular bacteria, until (in the rabbit) the lesion liquefies and the animal dies.

In this paper we propose a new hypothesis, which differs considerably from the Lurie-Dannenberg model. It is apparent to us that there is a very rapid response to the infection despite the very low dose, and hence it is highly probable that this response is innate in nature. Given the preponderance of macrophages, which are already present in significant numbers in the lesion by day 10, this may involve CD1- or Toll receptor-mediated mechanisms (3, 5, 25, 26, 35, 46). In addition, however, there are also obvious and prominent pockets of granulocytes; these may represent a double-edged sword in that they may be contributing to early protection, as suggested previously (1, 34), but their accumulation in response to local tissue damage and their own subsequent degranulation (perhaps merely due to their short life span) may also contribute to the local pathological process. Given the presence of these eosinophil-like cells throughout the early response, the data suggests that these cells are continuously accumulating in the lesions over this period.

It is possible that this innate immune response, which happens very early during the course of the infection, may be the trigger to the initial development of the characteristic central necrotic core. This structure is already very obvious by day 21, which seems to indicate that it has begun development long before the emergence of the acquired response. This latter response seems to peak about 10 days later and is associated with a large number of lymphocytes (a mixture of CD4+ and CD8+ cells) entering the lesion and forming a layer of cells peripheral to the central core. Moreover, in this region there are multiple scattered areas of fibrin deposition, which are suggestive of vascular permeability, which in turn would create local hypoxic conditions and cause the lesion to further increase in size. In contrast, there was no evidence for the hypothesis that the central core was promoted by cytolytic T cells, since there were no aggregates of either CD4+ or CD8+ cells adjacent to the lesion. Accordingly, our new hypothesis suggests that these very early mechanisms of innate immunity resulted in a process of irreversible damage that the subsequent emergence of the acquired response was too slow to prevent.

In a sense, moreover, the period of chronic disease seen between about days 31 and 71 might also be controlled in part by innate mechanisms. There is no evidence that the process of mineralization has an immune basis, and the substantial fibrotic response could also be regarded as a primitive event designed to wall off the lesion. Unfortunately, however, this process of consolidation is itself damaging, allowing erosion of cellular debris (including extracellular bacteria) into surrounding airways.

These guinea pigs succumb to the disease at about 100 to 140 days after exposure. We propose that at least two mechanisms underlie this event. First, the size of the lesion consolidates the lung lobe and interferes with efficient gas exchange. Second, the dissemination of the infection via debris deposition in the airways results in fresh ingestion by macrophages and the subsequent triggering of gamma interferon production by memory T cells. As a result, activated macrophages secrete large quantities of tumor necrosis factor alpha, leading to the weight loss invariably seen for a week or so prior to death of the animal.

Both M. bovis BCG and several new candidate vaccines are highly protective in the guinea pig model, which seems to suggest that this animal is capable of generating a potent memory T-cell response (2, 19). This in turn explains the very rapid lymphocytic response seen in vaccinated animals, which would be needed to prevent the development of the central necrotic core. As one of us has suggested elsewhere (32), this appears to be an important parameter of effective vaccination in this animal model.

Another important finding here was the observation that very few lymphocytes stained positive for apoptosis, suggesting that this mechanism does not play significant role in the disease process. This finding is rather contrary to the bulk of the literature (7, 15, 17, 21, 22, 27, 29, 38, 47), which holds that apoptosis of both T cells and infected macrophages is an important defense mechanism, although we note that most of these observations were all made in vitro.

Finally, although the mouse and guinea pig are considered to be quite different models of tuberculosis, there are also some similarities. If one regards the course of the disease in the guinea pig as having a stage of chronic disease followed by reactivation, then the fact that the latter stage is predisposed by much earlier events has certain similarities to the situation in various inbred mouse strains that are also prone to this event (45). Moreover, both animal models show evidence of a very efficient fibrotic response leading to deposition of collagen to provide some degree of integrity to the granuloma (30, 36).

Where there appear to be some interesting differences are in terms of the lymphocyte response. We have previously pointed to differences in terms of the propensity of mouse lymphocytes to accumulate toward the center of the granuloma (16, 30), and it may be that lymphocytes in the guinea pig occupy a more peripheral position simply because of the presence of the central necrosis. We have described clear distinctions between the CD4 and CD8 responses in mice, with CD4+ cells forming large aggregations dominating the granulomas and with CD8+ cells being more sparse and distributed more toward the periphery of the lesion (16). These data, when viewed with our data on CD8 gene knockout mice (43), are consistent with an immunosurveillance role for the CD8 population.

In the guinea pig, the distributions of the two T-cell subsets seem to be very different. Although large numbers of lymphocytes entered the lesions by day 31, they remained a fairly even randomized mixture of CD4+ and CD8+ cells, with no evidence of any cellular aggregation. In addition, they did not appear to collectively represent the entire population of lymphocytes, suggesting that the additional cells might be B cells and other cells, as previously seen in the mouse model (4, 16, 44). Whether this implies that CD8+ cells play a more prominent role in the early protective response in the guinea pig than in the mouse is impossible to say at this point.
This work was supported by U.S. Public Health Service grants AI-44072 and AI-45707 from NIAID, NIH.

We thank Andrea Cooper, Tony Frank, and Christopher Dascher for their helpful advice on this project and David McMurray for his continued encouragement.

REFERENCES


