A Calcium-Calmodulin Antagonist Blocks Experimental *Vibrio vulnificus* Cytolysin-Induced Lethality in an Experimental Mouse Model

Young-Rae Lee,1 Kwang-Hyun Park,1 Zhao-Zhen Lin,1 Young-Jong Kho,1 Jin-Woo Park,1 Hye-Won Rho,1 Bon-Sun Koo,1 Hyung-Rho Kim,1 Eun-Kyung Song,2 Hong-Nu Yu,2 Myung-Kwan Han,2 Seung-Ok Lee,3 Eun-Chung Jhee,4 and Jong-Suk Kim1*

Departments of Biochemistry,1 Microbiology and Immunology,2 and Internal Medicine,3 Chonbuk National University Medical School, and Department of Biochemistry, Chonbuk National University Dental School,4 Chonju, Republic of Korea

Received 22 April 2004/Returned for modification 9 June 2004/Accepted 28 June 2004

We demonstrated that trifluoperazine, a calcium-calmodulin antagonist, blocked the hyperpermeability induced by *Vibrio vulnificus* cytolysin in in vitro-modeled endothelium and prevented the deaths of mice. Furthermore, compared to tetracycline alone, tetracycline combined with trifluoperazine enhanced the survival rate of *V. vulnificus*-infected mice, indicating the role of the cytolysin as an important factor in pathogenesis.

*Vibrio vulnificus* is a gram-negative, halophilic bacterium that is capable of rapidly processing wound infections and septicemia (1, 2). Several *V. vulnificus* components and products have been suggested as virulence factors of the organism through in vitro or in vivo experiments (4, 9, 17, 19). Two of the most representative cytotoxins, cytolysin and the elastolytic protease, were considered to play major roles in *V. vulnificus* cytotoxicity. However, mutants with single mutations in either the cytolysin or protease gene showed no significant change in their 50% lethal doses in experimental mouse systems (15, 19). Even when both genes were knocked out, no significant change in virulence was noted (3). Consequently, key virulence factors have not yet been identified in the in vitro and in vivo cytotoxic activities of *V. vulnificus*. Nevertheless, it has been suggested that *V. vulnificus* cytolysin may be a virulent factor in mice infected orally. When *V. vulnificus* was administered via the oral route, its cytolysin seemed to be involved in the organism’s invasion across the intestinal wall. In fact, a protease mutant is more virulent by the oral route because the cytolysin activity might be increased by the lack of the protease inactivating the cytolysin (15). Thus, cytolysin might be at least partially involved in the pathogenesis of *V. vulnificus*.

In most of the terminal cases involving *V. vulnificus* infection, patients have exhibited underlying disease, particularly cirrhosis of the liver (1, 7, 13). The infection induces septicemia and ultimately leads to death from septic shock. A hallmark of septic shock is hypotension, which is caused by extravasation of intravascular fluid through enhancement of vascular permeability. Cirrhosis shows enhanced vascular permeability. Enhanced permeability might lead more easily to hypotension, which increases the chance for the lethality of septicemia induced by *V. vulnificus* infection.

Anti-*V. vulnificus* cytolysin antibodies were detected in the blood of *V. vulnificus*-infected mice or humans who survived *V. vulnificus* disease (5), indicating that cytolysin can be produced in vivo. Cytolysin was detected in sera from *V. vulnificus*-infected mice (6). Indeed, the injection of *V. vulnificus* cytolysin in the in vivo mouse model induced pulmonary edema through enhanced vascular permeability (12). Thus, *V. vulnificus* cytolysin might further increase the enhanced vascular permeability of cirrhotic patients and the chance for death from septic shock. The blockade of *V. vulnificus* cytolysin-induced hyperpermeability might increase the survival rate of *V. vulnificus*-infected patients who have cirrhosis of the liver.

It was previously shown that *V. vulnificus* cytolysin induces pulmonary edema (12). That report suggested that *V. vulnificus* cytolysin-induced pulmonary edema is mediated by the increase of vascular permeability. To confirm this more clearly, we tested whether *V. vulnificus* cytolysin could change the permeability of the endothelium in an in vitro model. The in vitro endothelium was established by the monolayer culture of pulmonary endothelial cells on a polycarbonate filter of a Transwell chamber. To measure endothelial permeability,125I-labeled albumin was applied to the upper part of the chamber with or without *V. vulnificus* cytolysin, and then the radioactivity of the lower chamber was determined for albumin flux. Albumin flux increased in a time- and dose-dependent manner in the presence of *V. vulnificus* cytolysin. Between 0.5 and 1.0 U of *V. vulnificus* cytolysin per ml significantly enhanced albumin flux across the endothelial cell monolayer without any cellular damage (Fig. 1A). The albumin flux reached peak levels within 60 min (Fig. 1B) in the presence of 1.0 hemolytic unit (HU) of *V. vulnificus* cytolysin per milliliter.

The endothelial cytoskeleton rearrangement leading to hyperpermeability is primarily regulated by intracellular calcium-signaling pathways (10). *V. vulnificus* cytolysin increases intracellular calcium concentrations through the influx of calcium ions into endothelial cells (8, 14). Thus, we explored whether the *V. vulnificus* cytolysin-induced increase of permeability is
associated with the calcium-calmodulin signaling pathway. Trifluoperazine (TFP), a phenothiazine derivative of an antipsychotic drug, has been known to block the Ca\(^{2+}\) signal by the inhibition of the calmodulin-Ca\(^{2+}\)-directed function with optimum concentrations between 5 and 100 \(\mu\)M (11, 18). The drug is relatively less toxic to cells than Ca\(^{2+}\)-chelating agents such as EDTA, 1-(2-Amino-5-[2,7-dichloro-6-hydroxy-3-oxo-9-xantheny]phenoxy)-2-(2-amin-5-methylphenox)ethane-N,N',N'-tetraacetic acid, and bix(O-aminophenox)ethane-N,N',N'-tetraacetic acid/acetoxyester. Thus, we analyzed the effect of the drug on the \(V.\) vulnificus cytolysin-induced increase of permeability. Interestingly, TFP (10 \(\mu\)M) significantly blocked a \(V.\) vulnificus cytolysin-induced increase in albumin permeability (Fig. 2). This type of response to \(V.\) vulnificus cytolysin was similar to those of other toxins (16). Thus, these results strongly indicate that \(V.\) vulnificus cytolysin induces the calcium-calmodulin-dependent hyperpermeability of endothelial cells.

To determine whether the in vitro protective effect of TFP on cytolysin-induced hyperpermeability is implicated in vivo, we investigated whether TFP has a protective role against death induced by \(V.\) vulnificus cytolysin. Intravenous injection of \(V.\) vulnificus cytolysin (8 HU) into mice resulted in death for 100% of the mice within 24 h after injection (Fig. 3A). In contrast, administration of 50 and 100 \(\mu\)g of TFP into cytolysin-treated mice delayed lethality, and all mice were ultimately rescued by the administration of 150 \(\mu\)g of TFP. These results suggest that TFP can also prevent the deaths induced by \(V.\) vulnificus infection. Thus, instead of injecting toxin into mice, we examined whether TFP can inhibit lethality in an infection model. Mice received an intravenous injection of 50 \(\mu\)g of TFP or 25 \(\mu\)g of tetracycline 1 h after intraperitoneal injection of \(V.\) vulnificus \((2 \times 10^6\) CFU). We found that the treatment of \(V.\) vulnificus-infected mice with TFP had no effect on the survival rate. However, compared to the administration tetracycline alone, TFP combined with tetracycline increased the survival rate of \(V.\) vulnificus-infected mice (Fig. 3), indicating that the cytolysin might be at least partially involved in the pathogenesis of \(V.\) vulnificus.

In conclusion, TFP protects against the lethality of \(V.\) vulnificus cytolysin. Furthermore, the combination of TFP and tetracycline leads to an increase in the survival of \(V.\) vulnificus-
infected mice. We suggest that TFP can be used in combination with antibiotics such as tetracycline as a therapeutic agent against *V. vulnificus* disease.

This work was supported by a grant from the Aging and Apoptosis Research Center (R11-2002-001-01001-1) to Jong-Suk Kim.

REFERENCES


