Tpr Homologs in *Treponema paraluiscuniculi* Cuniculi A Strain

Lorenzo Giacani,1,2 Eileen S. Sun,3,4 Karin Hevner,1 Barbara J. Molini,1 Wesley C. Van Voorhis,1,3 Sheila A. Lukehart,1,3 and Arturo Centurion-Lara1,3,*

Departments of Medicine1 and Pathobiology,3 University of Washington, and Rosetta Inpharmatics,4 Seattle, Washington, and Sezione di Microbiologia, Dipartimento di Medicina Clinica, Specialista e Sperimentale, Università di Bologna, Bologna, Italy2

Received 10 May 2004/Returned for modification 14 June 2004/Accepted 29 July 2004

Treponema paraluiscuniculi, the etiologic agent of rabbit venereal syphilis, is morphologically indistinguishable from *Treponema pallidum* subsp. *pallidum* (*T. pallidum*), the human syphilis treponeme, and induces similar immune responses and histopathologic changes in the infected host. Because of their high degree of relatedness, comparative studies are likely to identify genetic determinants that contribute to pathogenesis or virulence in human syphilis. The *tpr* (*Treponema pallidum* repeat) genes are believed to code for potential virulence factors. In this study, we identified 10 *tpr* homologs in *Treponema paraluiscuniculi* Cuniculi A strain and determined their sequence architecture. Half of this group of paralogous genes were predicted to be nonfunctional due to the presence of frameshifts and premature stop codons. Furthermore, the immune response against the *T. paraluiscuniculi* Tpr homologs in long-term-infected rabbits was studied by enzyme-linked immunosorbent assay and lymphocyte proliferation assay, showing that TprK is the only target of the antibody and T-cell responses during experimental infection and emphasizing the importance of this putative virulence factor in venereal treponematoses.

The spirochetes are a small but diverse family of bacteria and show a wide range of host specificities. Examples of these are the easily cultivated free-living organisms (*Spirochaeta* spp.), commensal treponemes of the termite gut, the human and animal pathogens in the genera *Borrelia*, *Leptospira*, and *Brachyspira*, and the cultivable and noncultivable treponemes of humans and animals. Of the five noncultivable pathogenic treponemes, *Treponema paraluiscuniculi* naturally infects rabbits but is thought not to be infectious for humans (14). In contrast, the three subspecies of *Treponema pallidum* naturally infect humans but can also experimentally infect rabbits and other mammals. *Treponema carateum* naturally infects humans but is unable to multiply in rabbits or other nonprimates (28).

Treponema paraluiscuniculi is the etiologic agent of rabbit venereal syphilis. It was identified in 1913, only 8 years after *T. pallidum* Nichols strain revealed 48 potential virulence genes, among them a novel family of 12 paralogous genes (*tpr* genes, for *Treponema pallidum* repeat) (13). The *tpr* genes account for >2% of the small *T. pallidum* genome. The family is divided into three subfamilies by their predicted amino acid homology: subfamily I (TprC, TprD, TprF, and TprI), subfamily II (TprE, TprG, and TprJ), and subfamily III (TprA, TprB, TprH, TprK, and TprL). The subfamily I and subfamily II proteins have conserved NH₂- and COOH-terminal regions, whereas the central domains vary sequence and length. Within subfamily I, TprC and TprD are identical in the Nichols strain, and TprF lacks a central variable domain and the conserved COOH-terminal region due to a frameshift. Subfamily III members are comparatively less homologous to each other and to the other Tpr proteins. It has been shown that TprK, TprI, and TprF are the targets of a strong humoral and cellular immune response during syphilis infection in the rabbit model, and immunization with recombinant peptides significantly alters lesion development (4, 23, 27). In addition, TprK contains a cleavable leader sequence, possesses multiple alleles in *T. pallidum* isolates, and undergoes antigenic variation during syphilis infection (6, 7, 16). This suggests an important role for the Tpr antigens during syphilis infection.

Among the several approaches used to identify virulence...
factors are intra- and interspecies comparisons to determine which antigens are conserved and which are variable among different strains or species (30). Weinstock et al. reported that, while tpr genes are highly conserved among human syphilis strains, most of the differences between the T. pallidum subsp. pallidum and T. pallidum subsp. pertenue subspecies involved the tpr genes (30). Despite the high level of relatedness and the natural ability to infect rabbits, T. paraluiscuniculi is considered not to be infectious for humans (14). The host specificity shown by this microorganism in association with the similarities to syphilitic infection make T. paraluiscuniculi a unique comparison species for understanding which genetic determinants contribute to pathogenesis or virulence in human syphilis. For this reason, we studied the tpr gene family in the rabbit treponeme to determine the sequence architecture of and immune responses to these antigens. In this study, we characterized the tpr gene family of T. paraluiscuniculi, and here we describe distinctive features of several of its members.

MATERIALS AND METHODS

T. paraluiscuniculi propagation and DNA extraction. *T. paraluiscuniculi* Cu- niculi A strain was provided by Paul Hardy and Ellen Nell (Johns Hopkins University, Baltimore, Md.), propagated intratesticularly in New Zealand White rabbits and harvested as described elsewhere (19). Before infection, each rabbit had been serologically tested to rule out a naturally occurring infection with *T. paraluiscuniculi*. Treponemes were extracted from infected rabbit testes at peak orchiitis or 3 weeks after the infection. Collected organisms were separated from host cellular gross debris by low-speed centrifugation (250 × g for 10 min at room temperature); the supernatants were spun in a microcentrifuge for 30 min at 12,000 × g at 4°C. The pellet was resuspended in 200 μl of 1× lysis buffer (10 mM Tris [pH 8.0], 0.1 M EDTA, 0.5% sodium dodecyl sulfate). DNA extraction was performed as previously described (5) with the QIAamp DNA minikit (Qiagen Inc., Chatsworth, Calif.), taking standard precautions to prevent cross-contami-
nation between samples.

PCR amplification, cloning, sequencing, and sequence analysis. The *T. pallidum* genome sequence (13) was used to design primers in the 5′- and 3′-flanking regions of the Nichols tpr genes to amplify the corresponding *T. paraluiscuniculi* DNA regions. The primers used for amplification are listed in Table 1. Each PCR was performed in a 50-μl final volume containing 200 μM deoxynucleoside triphosphates, 50 mM Tris-HCl (pH 9.0 at 20°C), 1.5 mM MgCl₂, 20 mM NH₄SO₄, and 2.5 U of Taq polymerase (Promega, Madison, Wis.). Amplicons from two different PCRs with *T. paraluiscuniculi* DNA as the template were compared to minimize PCR errors. *T. pallidum* DNA was used as a positive control for each reaction. When required, a third amplification reaction followed by cloning and sequencing was used to confirm the data from the first two reactions (tprE and tprC). The cycling conditions were denaturation at 95°C for 2 min, followed by 95°C for 1 min, 60°C for 1 min, and 72°C for 2 min for 35 cycles in total; the final extension was 72°C for 3 min. The products were separated in 1% agarose gels and cloned into the pcRII-Topo cloning vector (Invitrogen, Carlsbad, Calif.), according to the manufacturer’s instruction.

Plasmid DNA from colonies containing inserts was extracted with the Qiagen plasmid minikit (Qiagen), and at least two clones, each one from a different amplification reaction, were sequenced in both directions with the Applied Bio-
systems dye terminator sequencing kit (Perkin-Elmer, Foster City, Calif.) with the primer walking approach (unpublished data). Sequences were aligned with the Multiple Alignment Program (http://searchlauncher.bcm.tmc.edu/multi-
align/multi-align.html), and shading of identical bases was done with the Box-
shade 3.21 program (http://www.ch.embnet.org/software/BOX_form.html). Open reading frames (ORFs) and reading frames were determined with the NCBI ORF finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and the Six Frames Translation (http://searchlauncher.bcm.tmc.edu/seq-utility/seq-utility.html) programs. Supplemental data is available at http://depts.washington.edu/treplab/

Infection with *T. paraluiscuniculi*. Approximately 10⁷ organisms were used to infect six New Zealand White rabbits intratesticularly. Each rabbit had tested seronegative for prior *T. paraluiscuniculi* infection by the Venerable Disease Research Laboratory and fluorescent treposomal antibody absorption tests. To test antibody responses against recombinant Tprs, sera were collected at day 0, day 30 postinfection, and approximately every 30 days thereafter until day 270. At 270 days after infection, the rabbits were sacrificed and splenocytes were harvested to perform the lymphocyte proliferation assay.

Recombinant and synthetic peptides. The recombinant Tprs used to perform the enzyme-linked immunosorbent assays (ELISAs) and lymphocyte prolifera-
tion assays are listed in Table 2. The partial open reading frames coding for these peptides have been cloned from *T. pallidum* Nichols strain genomic DNA. Expression and purification by affinity chromatography on nickel agarose of the 6-His-tagged proteins were performed as previously described (4). TprF could not be expressed. With the exception of TprF and the peptides labeled as being from conserved regions, each recombinant peptide represents the unique central region, which contains sequences that differentiate the individual Tpr proteins; only small portions of the sequence that is conserved among members of the same subfamily are present in the peptides.

The subfamily III recombinant proteins (TprA N-terminal and C-terminal, TprB central, TprH central, and TprK central) have virtually no overlap, while Tpr I central, TprE central, TprG central, and TprI central each contain 23 amino acids of the NH₂-terminal conserved region; TprF central also contains 21 amino acids of the COOH-terminal conserved region. TprF, in contrast, contains 262 amino acids of the NH₂-terminal conserved region of subfamily I in addition to 87 amino acids representing the central region. TprD2-central is an allele-
specific peptide. The peptides representing the conserved amino terminus and

TABLE 1. Primers in the 5′- and 3′-flanking regions of the tpr genes

<table>
<thead>
<tr>
<th>Subfamily and gene</th>
<th>Sense primer (5′-flanking region)</th>
<th>Antisense primer (3′-flanking region)</th>
<th>Amplicon size (bp)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subfamily I</td>
<td>tprC</td>
<td>5′-GGGGGTAGGTTAGGAAGTGAGA</td>
<td>1,916</td>
</tr>
<tr>
<td></td>
<td>tprD</td>
<td>5′-AACGAGTCTCAAGGAAGCCAGC</td>
<td>2,792</td>
</tr>
<tr>
<td>Subfamily II</td>
<td>tprG1</td>
<td>5′-CAGATTTTCTCCGTTCTTGG</td>
<td>3,257</td>
</tr>
<tr>
<td></td>
<td>tprG2</td>
<td>5′-AAGGTGCTTTCAGAT</td>
<td>3,018</td>
</tr>
<tr>
<td></td>
<td>tprG/I hybrid</td>
<td>5′-CGGTATACCTTTCTTTCTTCTCT</td>
<td>2,459</td>
</tr>
<tr>
<td>Subfamily III</td>
<td>tprA</td>
<td>5′-CTGTAGGCTTTACCCCGGGGT</td>
<td>2,705</td>
</tr>
<tr>
<td></td>
<td>tprB</td>
<td>5′-CTTCCAGGCTTAACTTAAATGC</td>
<td>3,011</td>
</tr>
<tr>
<td></td>
<td>tprK</td>
<td>5′-TCCCCCATGTCGACCTAT</td>
<td>2,083–2,133b</td>
</tr>
<tr>
<td></td>
<td>tprL</td>
<td>5′-TTCTCGAGCAGCTAGGCATTG</td>
<td>1,876</td>
</tr>
<tr>
<td></td>
<td>tprH</td>
<td>5′-ACGGCGTCTTCTTCTTCAGT</td>
<td>3,197</td>
</tr>
</tbody>
</table>

a The size refers to amplitons with *T. paraluiscuniculi* DNA as the template.
b Size range of 10 tprK amplitons.

[Downloaded from http://iai.asm.org on September 22, 2017 by guest](http://iai.asm.org)
TABLE 2. Recombinant peptides used for antibody response and lymphocyte proliferation assays

<table>
<thead>
<tr>
<th>Subfamily and peptide</th>
<th>Amino acid sequence limits</th>
<th>Size (no. of residues)</th>
<th>Identity(^a) with T. paraluiscuniculi predicted ORFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subfamily I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'-subfamily I</td>
<td>YAGVLT. . . . OHQDPA</td>
<td>267</td>
<td>98.6% identity with TprC and TprD before frameshift</td>
</tr>
<tr>
<td>TprF (N-terminal and central region)</td>
<td>YAGVLT. . . . GTGGAC</td>
<td>349</td>
<td>98.6% identity with TprC and TprD before frameshift</td>
</tr>
<tr>
<td>TprD2-central</td>
<td>TSLGD. . . . WLOQFTY</td>
<td>90</td>
<td>96% with TprC and TprD</td>
</tr>
<tr>
<td>3'-subfamily I (A)(^b)</td>
<td>GFLRLE. . . . TKSGDP</td>
<td>86</td>
<td>81% with TprC and TprD</td>
</tr>
<tr>
<td>3'-subfamily I (B)(^b)</td>
<td>RIPGLS. . . . IAESIW</td>
<td>76</td>
<td>82% with TprC and TprD</td>
</tr>
<tr>
<td>Tpr1-central</td>
<td>RLTLEP. . . . YTHLLT</td>
<td>211</td>
<td>80% with TprG/I hybrid</td>
</tr>
<tr>
<td>Subfamily II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TprG-central</td>
<td>RLTLEP. . . . DLIPKT</td>
<td>219</td>
<td>85.3% with TprG1 and TprG2</td>
</tr>
<tr>
<td>3'-Subfamily II</td>
<td>LFTAOW. . . . GVTLSV</td>
<td>202</td>
<td>89.3% with TprG1; 89.6% with TprG2</td>
</tr>
<tr>
<td>TprE-central</td>
<td>RLTLEP. . . . QOTVAA</td>
<td>191</td>
<td>9.5% with TprG1 and TprG2</td>
</tr>
<tr>
<td>Tpr3-central</td>
<td>RLTLEP. . . . MRTEIT</td>
<td>226</td>
<td>56.6% with TprG1 and TprG2</td>
</tr>
<tr>
<td>Subfamily III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TprA (N-terminus)</td>
<td>MRLVLP. . . . NCGTERR</td>
<td>253</td>
<td>91.6%</td>
</tr>
<tr>
<td>TprA (C-terminus)</td>
<td>MGLVVT. . . . GCKITW</td>
<td>368</td>
<td>90%</td>
</tr>
<tr>
<td>TprB-central</td>
<td>RLTSLP. . . . SLSKLV</td>
<td>194</td>
<td>99.4%</td>
</tr>
<tr>
<td>TprH-central</td>
<td>RLTLEP. . . . DLIPKT</td>
<td>191</td>
<td>85.3% with TprG1 and TprG2</td>
</tr>
<tr>
<td>TprK-central(^c)</td>
<td>EIEYAE. . . . DTSFLE</td>
<td>315</td>
<td>84%</td>
</tr>
<tr>
<td>TprL(^d)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

\(^a\) To define identity, T. pallidum recombinant peptide sequences were aligned with their T. paraluiscuniculi homologues and the value was calculated as (number of identical amino acids in identical position/recombinant peptide size) × 100.

\(^b\) 3'-subfamily I A and B are partially overlapping peptides encompassing positions 313 to 395 (peptide A) and 379 to 454 (peptide B) of T. paraluiscuniculi TprC and TprD (B ORF, Fig. 1), respectively.

\(^c\) The TprK 1.1 clone was used for this calculation.

\(^d\) Recombinant peptide not available (NA).

carboxy terminus of subfamilies I and II are labeled 5'-conserved and 3'-conserved, respectively. We were unable to produce the 5'-conserved peptide for subfamily II, and the 3'-conserved peptide of subfamily I had to be produced in two smaller fragments, as expression of full-length peptide appeared to be toxic to Escherichia coli. The percent identity between the Nichols-based recombinant antigens and T. paraluiscuniculi Tprs is indicated in Table 2.

Overlapping 20-amino-acid-long synthetic peptides were synthesized based on the Seattle Nichols strain TprK sequence (GenBank accession number AF194369) as described elsewhere (24). Thirty-nine peptides with a 10-amino-acid overlap, spanning the entire mature TprK sequence (amino acids 30 through 349) (16) (see Fig. 6 and data not shown) were used in lymphocyte proliferation assays. Additionally, the conserved carboxyl terminus (amino acids 425 to 478, listed as peptide 40) was cloned and expressed as a recombinant protein as described previously (24).

ELISAs. The appropriate purified recombinant Tpr antigen (0.5 μg per well) in phosphate-buffered saline (PBS) containing 0.1% sodium azide and 0.1% sodium dodecyl sulfate was used to coat the wells of a 96-well ELISA plate (EIA II Plus Microplate; ICN, Irvine, Calif.). The plates were incubated at 37°C for 2 h and subsequently at 4°C overnight. The wells were then washed three times with PBS, blocked by incubation for 1 h at room temperature with 200 μl of 3% nonfat milk–PBS well, and washed again.

Rabbit sera collected from six animals prior to infection and at days 30, 60, 90, 130, 160, 190, 230, and 270 postinfection were pooled for each time point and incubated at room temperature before repeating the washing step. Finally, the plates were developed for 45 min after addition of 50 μl of 1-mg/ml para-nitrophenyl phosphate (Sigma) to each well and read at 405 nm on a Multiskan MC plate reader (Titertek, Huntsville, Ala.). The mean of background readings (from preimmune rabbit sera) was subtracted from the mean of triplicate experimental wells for each antigen. The reported data are the mean ± standard error of the mean for each antigen per time point.

Lymphocyte proliferation assays. Three uninfected and five Cuniculi A strain-infected rabbits (day 270 postinfection) were sacrificed, and splenic lymphocytes were harvested and cultured as previously described (1, 19) in RPMI medium supplemented with glutamine (2 mM final concentration), penicillin (100 U/ml final concentration), streptomycin (100 μg/ml final concentration), and heat-inactivated normal rabbit serum (1% final concentration). Approximately 5 × 10⁵ cells in 200 μl of culture medium were plated in quadruplicate for each rabbit, and each antigen and each animal in flat-bottomed 96-well plates (Costar, Cambridge, Mass.) and incubated at 37°C in 5% CO₂ atmosphere. Recombinant proteins were added at 2 and 10 μg/ml final concentrations, and synthetic peptides were added at a 25 μg/ml final concentration; 10 μg/well of a sonicated suspension of T. pallidum was used as the treponeme-specific positive control, and 0.5 μg/well (as determined by titration) of concanavalin A (ICN) used as the positive T-cell control. PBS was used to measure background reactivity. Three days after exposure to recombinant peptide or controls, cells were pulsed with 0.5 μCi of [³H]thymidine per well and harvested after 24 h to measure tritiated thymidine incorporation. The geometric mean of quadruplicate wells with no antigens (determined as background value) was subtracted from the geometric means of quadruplicate wells of each antigen for each rabbit.

RESULTS

Identification of tpr homologs in T. paraluiscuniculi. All tpr loci defined in the Nichols genome sequence were analyzed in the corresponding chromosomal locations in T. paraluiscuc-
identified only the \textit{tprC} \textit{T. pallidum} sequences were aligned with the homology with other \textit{Cuniculi A} strain. The DNA and predicted amino acid sequences available in the databases.

Overall, we identified three major subfamilies and one hybrid ORF. These are described in Table 3.

Subfamily I in \textit{T. pallidum} is composed of four members, \textit{tprC}, \textit{tprD}, \textit{tprF}, and \textit{tprI}. In the \textit{Cuniculi A} strain, however, we identified only the \textit{tprC} and \textit{tprD} alleles. These loci contain identical sequences (Fig. 1), which are highly homologous to the \textit{T. pallidum} \textit{tprD2} allele described previously (8). However, these ORFs do not encode full-length \textit{TprD2} amino acid sequences. Instead, there is an identical frameshift in each ORF (described below as a \textit{tprD2} hybrid). The DNA regions in \textit{Cuniculi A} corresponding to the \textit{Nichols} \textit{tprE} and \textit{tprI} loci were found to contain two identical sequences with a complex pattern of homology to the Nichols subfamily II \textit{tprs} (Fig. 2 and Fig. 4A). Their 5’ end aligns with the conserved 5’ end of the subfamily II \textit{tprs} (\textit{tprE}, \textit{tprG}, \textit{tprI}); the central regions align with the central portion of the Nichols \textit{tprG} and their 3’ end with the corresponding fragment of the Nichols \textit{tprJ} (Fig. 2 and 4B). Despite the complex nature of the sequence composition, they show the highest homology to Nichols \textit{tprG}. For this reason, they are called here \textit{tprG1} and \textit{tprG2}. Similar to the \textit{tprC} and \textit{tprD} alleles, these two ORFs have an extra guanosine in position 653 of the coding sequence, which also creates a frameshift (amino acid position 217 of \textit{Cuniculi A} \textit{TprG1} and \textit{TprG2} ORFs; Fig. 2) and a premature stop in the predicted amino acid sequences. There is no \textit{tprE} homolog.

In \textit{T. paraluiscuniculi}, a single \textit{tprG/I} hybrid ORF replaces the loci occupied by \textit{tprG} and \textit{tprF} in the Nichols strain (Fig. 3). It is unique in that the 5’ end is homologous to the Nichols

Table 3. Characteristics of \textit{T. paraluiscuniculi} \textit{tpr} genes and predicted proteins

<table>
<thead>
<tr>
<th>\textit{T. paraluiscuniculi} \textit{Tpr}</th>
<th>Closest Nichols strain homolog</th>
<th>Primer seta</th>
<th>ORF lengthb (bp)</th>
<th>Predicted size (kDa)</th>
<th>Signal peptidec</th>
<th>Predicted cellular locationd</th>
</tr>
</thead>
<tbody>
<tr>
<td>TprG/I hybrid</td>
<td>TprG (sense), \textit{tprF} (antisense)</td>
<td>Reading frame A</td>
<td>TprG (amino-terminal region)</td>
<td>777</td>
<td>27.7</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>Reading frame B</td>
<td>Tprl (central and carboxyl-terminal regions)</td>
<td>1,344</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subfamily I</td>
<td>TprC</td>
<td>\textit{tprC}</td>
<td>Reading frame A</td>
<td>TprD2e</td>
<td>591</td>
<td>21.4</td>
</tr>
<tr>
<td></td>
<td>Reading frame B</td>
<td>TprD2e</td>
<td>1,413</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TprD</td>
<td>\textit{tprD}</td>
<td>Reading frame A</td>
<td>TprD2</td>
<td>591</td>
<td>21.4</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Reading frame B</td>
<td>TprD2</td>
<td>1,413</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subfamily II</td>
<td>TprG</td>
<td>\textit{tprG}</td>
<td>Reading frame A</td>
<td>TprG</td>
<td>753</td>
<td>27.7</td>
</tr>
<tr>
<td></td>
<td>Reading frame B</td>
<td>Tprl</td>
<td>1,752</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TprG2</td>
<td>\textit{tprI}</td>
<td>Reading frame A</td>
<td>TprG</td>
<td>753</td>
<td>27.7</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>Reading frame B</td>
<td>TprG</td>
<td>1,752</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subfamily III</td>
<td>TprA</td>
<td>\textit{tprA}</td>
<td>TprA</td>
<td>1,797</td>
<td>65.9</td>
<td>U</td>
</tr>
<tr>
<td>TprB</td>
<td>TprB</td>
<td>\textit{tprB}</td>
<td>1,935</td>
<td>69.5</td>
<td>N</td>
<td>Cy</td>
</tr>
<tr>
<td>TprH</td>
<td>TprH</td>
<td>\textit{tprH}</td>
<td>2,082</td>
<td>76.0</td>
<td>N</td>
<td>Cy</td>
</tr>
<tr>
<td>TprKf</td>
<td>TprK</td>
<td>\textit{tprK}</td>
<td>1,518</td>
<td>57.7</td>
<td>C</td>
<td>P/OMg</td>
</tr>
<tr>
<td>TprL</td>
<td>TprL</td>
<td>\textit{tprL}</td>
<td>1,341</td>
<td>48.8</td>
<td>N</td>
<td>Cy</td>
</tr>
</tbody>
</table>

a Indicates which \textit{tpr} gene was targeted for amplification. In the Nichols strain of \textit{T. pallidum}, each set recognizes the flanking regions of the gene indicated. Reading frames A and B indicate the two ORFs generated by the frameshift. No predictions (size, signal peptide, and cellular localization) are reported for the B ORFs due to the lack of evidence that these regions are actually transcribed or translated.

b Total length includes stop codon.

c Signal peptide predicted by Psort (http://psort.nibb.ac.jp/). U, uncleavable; C, cleavable; N, none.

d Location of the predicted protein in the bacterial cell, predicted by Psort. OM, outer membrane; IM, inner membrane; P, periplasmic; Cy, cytoplasmic.

e The \textit{tprD2} allele is not present in the Nichols strain genome. However, it was reported in several strains of \textit{T. pallidum subsp. pallidum} (8).

f The \textit{TprK} 1.1 clone was used for this prediction.

g Prediction made with the translational start site for Nichols \textit{TprK} (4, 15) at position 26 of the sequence indicated as \textit{TprK-N} in Fig. 7.
subfamily II 5′ conserved region, and the central unique region and the 3′ end contain a tprF-like sequence (Fig. 4B). The presence of a complete central region and a 3′ end with a stop codon as predicted in the Nichols tprI ORF rules out the possibility that the sequence in the G/I hybrid is tprF (tprF contains a large deletion in the central region, a frameshift and a premature stop). Interestingly, as seen in the Cuniculi A tprD2 alleles and in the tprG1 and tprG2 ORFs, this hybrid molecule also has a frameshift at nucleotide position 653 (amino acid position 217 of TprG/I, A ORF; Fig. 3), which introduces a premature stop in the predicted protein sequence (Fig. 3).

As in the human treponeme, Cuniculi A subfamily III is composed of five members (tprA, tprB, tprH, tprK, and tprL) with poor homology to each other and to the other predicted Cuniculi A tprs. tprH and tprB are virtually identical to their T. pallidum homologs except for scattered nonsynonymous single-nucleotide polymorphisms which introduce four amino acid changes in TprB and five in TprH (unpublished data). tprA in the Nichols strain contains an authentic frameshift at nucleotide number 712 (amino acid position 237 of Nichols TprA ORF; Fig. 5) located in a region containing three dinucleotide repeats (CT) at positions 706 to 711 in the ORF. In contrast, the tprA ORF in T. paraluiscuniculi contains four CT dinucleotide repeats, which revert the frameshift and generate a sequence encoding a full-length ORF.

The presence of dinucleotide repeats is frequently associated with regulatory mechanisms of gene expression, where the
number of repeats varies according to an on or off state to achieve phase variation of gene expression. To see whether variation in the number of dinucleotide repeats is due to such a mechanism as an explanation for the absence of a frameshift and premature termination in Cuniculi A \textit{tprA}, we sequenced 15 more clones of a DNA region of approximately 800 bp containing the dinucleotide repeats (data not shown). All sequences confirmed the absence of a frameshift in the rabbit treponeme \textit{tprA} homolog. We are aware, however, that changes in the number of repeats that occur at low frequencies may not be detected with this approach. Alignment of the Nichols and Cuniculi A \textit{tprL} homologs showed conserved 5' and 3' ends with a different central region of 366 nucleotides (122 amino acids, positions 131 to 252 of Cuniculi A TprL; Fig. 6). This unique region in Cuniculi A has no sequence homology in the \textit{T. pallidum} databases.

We have shown previously that the TprK antigen in \textit{T. pallidum} is heterogeneous within and among \textit{T. pallidum} isolates.
The heterogeneity is localized in seven discrete variable regions (V1 to V7) flanked by highly conserved sequences (6). In the Cuniculi A strain of the rabbit treponeme, however, heterogeneity was identified in only a subset of V regions (Fig. 7), corresponding to \textit{T. pallidum} V1, V2, V4, V6, and V7; V3 is not variable, at least in this isolate of \textit{T. paraluiscuniculi}, and V5 shows very limited sequence diversity. The Cuniculi A\textit{ V} regions differ in their degree of heterogeneity, but diversity is, overall, less impressive than in the human treponeme. As in \textit{T. pallidum}, V6 is the most diverse (eight sequences in 10 clones).

In addition to the differences in the number of V regions between the rabbit and human treponemes, there were 27 additional amino acid differences in the conserved regions compared with the sequence of the Nichols strain. Most were randomly dispersed throughout the conserved regions except for a region of 20 amino acids located immediately upstream of V6. This peptide sequence (SGDPYTHLLTGLNAGVEARV, amino acid positions 367 to 387 of \textit{tprK}-C clones; Fig. 7) differs significantly from the corresponding TprK sequence in the human treponemes and has no homology to any of the seven V regions. Further analysis of this peptide sequence revealed that it matched a highly conserved region of TprL in both the Nichols and Cuniculi A strains and was also present in the carboxyl terminus of the Nichols subfamily I and II antigens.

\textbf{Antibody and T-cell responses.} Pooled sera collected from six \textit{T. paraluiscuniculi}-infected rabbits at nine different time points (day 0 to day 270) were tested by ELISA against recombinant peptides based on the Nichols strain Tpr sequences (Table 2). Sera collected prior to infection showed no specific
reactivity against any of the recombinant antigens tested. ELISA background absorbance readings ranged from 0.001 to 0.03 units. Immune sera raised against each of the recombinants were used as positive controls and to assess binding of the antigen to the plate well (data not shown). All sera tested (pre- and postinfection and positive-control sera) were not reactive against the unrelated SA85 1.1 Trypanosoma cruzi recombinant protein (24) used as a control antigen to assess cross-reactivity (data not shown).

Antibody responses to Cuniculi A strain subfamily I members (TprC and TprD) were determined with five recombinant peptides (5/H11032-subfamily I, TprF, TprD2-central, and 3/H11032-subfamily I A/B; Fig. 8). TprF and the 5-subfamily I recombinant share a sequence of 267 amino acids (the conserved amino terminus of subfamily I). The strongest reactivity peak against these two recombinants was detected at day 30, decreasing gradually over time, with virtually no detectable reactivity by day 190. We interpret this antibody reactivity in infected rabbits as the immune response against the amino terminus of the Cuniculi A TprD2-like peptides due to sequence conservation in this region in all members of subfamily I. Although the Cuniculi A tprC and tprD loci contain frameshifts which cause premature stops, it is still possible that the coding region upstream of the frameshift could be translated. The TprD2-central and the 3-subfamily I A/B recombinant peptides were not recognized by the antisera (Fig. 8), consistent with the hypothetical partial translation of TprC and TprD.

The TprG-central and 3-subfamily II recombinant peptides were used to detect antibody responses against Cuniculi A TprG1 and TprG2. These two identical homologs encode hybrid proteins which contain the following Nichols fragments: the amino terminus of subfamily II (containing a frameshift), the unique central region of TprG, and the carboxyl terminus of TprJ (Fig. 2 and Fig. 4A). The antisera showed no reactivity (Fig. 8), most likely because these recombinants represent proteins that are not translated due to the frameshift in the Cuniculi A coding sequences. No recombinant peptide was available to investigate the antibody response against the NH2-terminal portion of the subfamily II Tprs. Antisera were also tested against two antigens (TprE-central and TprJ-central) representing the central regions of Nichols subfamily II members TprE and TprJ. These sequences have a very low degree of homology with any of the Cuniculi A antigens described (Table 2), but they were tested to rule out expression of unidentified Tpr antigens with significant homology to these two Tprs elsewhere in the chromosome. No significant reactivity against them was detected (Fig. 8). Antibodies against the Cuniculi A TprG1 hybrid were investigated with the TprI-central peptide, corresponding to the hybrid’s central unique region, but no reactivity was found (Fig. 8). As in subfamilies I and II, this suggests no translation due to the frameshift upstream of this region.

Five peptides (TprA N-terminal, TprA C-terminal, TprB-central, TprH-central, and TprK-central) were tested to assess reactivity against subfamily III members. Antisera reacted against TprK, with the highest and strongest reactivity at day 30 postinfection (Fig. 7). No significant antibody reactivity was detectable against TprA N-terminal, TprA C-terminal, TprB-central, and TprH-central.

T-cell responses against the T. paraluiscuniculi Tprs were assessed with the same recombinants used for the ELISA tests (Table 2) plus 40 additional peptides (39 synthetic and 1 recombinant) spanning the entire Nichols TprK sequence (unpublished data). Concanavalin A-stimulated splenic lymphocytes from infected and uninfected rabbits showed strong proliferative responses, while no significant proliferation was detected in the absence of antigen (data not shown). Splenocytes from T. paraluiscuniculi-infected rabbits had significant [3H]thymidine incorporation when stimulated with T. pallidum sonicate and, in contrast, splenocytes from uninfected rabbits failed to proliferate in the presence of T. pallidum sonicates (data not shown). Of all the recombinant peptides listed in Table 2, only the TprK-central recombinant elicited a significant response in infected rabbits (Fig. 9A); no response was found to any other recombinant peptides (data not shown). Proliferation was seen in response to synthetic peptides 1, 3, 10, and 15 and recombinant peptide 40, all of which carry...
FIG. 7. Alignment of TprK deduced amino acid sequences in T. paraluiscuniculi and T. pallidum Nichols strain. TprK-N, T. pallidum Nichols strain sequence. Amino acid sequences upstream of the Nichols TprK translational start site are included for comparison (4, 15). TprK 1.1 to 1.5 and TprK 2.1 to 2.5, T. paraluiscuniculi sequences from two independent PCRs; V1 to V7, TprK variable regions (6).
highly conserved TprK regions. None of the other peptides induced significant T-cell responses (Fig. 9B).

The tpr gene family in T. paraluiscuniculi is composed of at least 10 paralogs; six of them are single-copy genes, and two have identical alleles in two different loci. These characteristics are summarized in Table 3, along with prediction of cellular location, molecular weight, and presence of a signal peptide.

Sequence analysis predicts that half of these genes are non-functional due to the presence of frameshifts and premature stop codons; only the subfamily III ORFs are presumably fully functional. Antibody and T-cell assays show, however, that only TprK is recognized by the humoral and cellular immune response, suggesting that the other subfamily III members may not be expressed. The diversity in Cuniculi A TprK resembles that observed in T. pallidum and suggests the presence of an antigenic variation system similar to the one described for the human treponeme (6, 7).

DISCUSSION

The Tpr antigen families of T. pallidum and T. paraluiscuniculi, pathogenic spirochetes which cause human and rabbit venereal syphilis, respectively, were the focus of this comparative study. Both spirochetes cause persistent infections, are transmitted from host to host by a similar route, and are indistinguishable in morphology and the immunopathological changes induced. However, the human venereal syphilis spirochete has the ability to infect both humans and rabbits, while the rabbit treponeme has a more restricted host specificity, being unable to cause active infection in humans (14).

Morphological, genetic, and immunological analyses of T. paraluiscuniculi and the other pathogenic treponemes indicate that these organisms are highly related. It has been postulated that the pathogenic treponemes arose originally from freeliving treponemes in mud (29). These organisms came to be carried commensally by animals and humans and then developed the ability to cause disease as natural selection ensured the optimal survival of mutants best suited for transmission from host to host in the prevailing environment (31). It is most likely that the rabbit spirochete and the other treponemes evolved with mechanisms similar to those of other organisms, by acquisition or loss of new traits resulting in differences in host specificity and mechanisms of pathogenesis.

The tpr gene family likely arose by gene duplication events in the distant past. Duplication of an ancestor tpr gene during evolution may have generated this paralogue family, whose members then underwent further differential evolution. Some might have been randomly silenced, while others might have undergone neofunctionalization (one copy acquires a novel, beneficial function and becomes preserved by natural selection, while the other copy retains its original function) (20, 22) or subfunctionalization (complementary loss of function of both copies to the level of the single-copy ancestral gene, resulting in the preservation of both loci) (21).

All the subfamily I (tprC, tprD, tprF, and tprI) tprs in the human syphilis treponeme Nichols strain are thought to be transcribed and translated (4, 27; unpublished data) and, except for tprF, do not contain frameshifts and early termination. In contrast to T. pallidum, all subfamily I (tprC and tprD), II (tprG1 and tprG2), and the I/II hybrid (tprG/I) ORFs identified in T. paraluiscuniculi are predicted to encode truncated proteins due to frameshifts caused by a single extra guanosine in their coding sequences. This predicts that these genes are not essential for survival in the rabbit. Sequences obtained from two independent PCRs and from shorter amplicons containing the frameshift regions (data not shown), obtained with primers internal to the ones used for amplification of the whole ORFs, ruled out the possibility that the extra G nucleotide was due to PCR error. In addition, it is highly unlikely that PCR errors would be introduced at the...
FIG. 8. Antibody responses of T. paraluiscuniculi-infected rabbits to Tpr recombinant peptides through day 270 postinfection as measured by ELISA. Peptides were designed based on the Nichols strain Tpr sequences. The reported values (mean OD_{405} ± standard error of the mean) represent three replicates of pooled sera from six Cuniculi A strain-infected rabbits.
same nucleotide position for \textit{tprC} and \textit{tprD} and, for the \textit{tprG1} and \textit{tprG2} alleles, in two independent PCRs for each template. It is also possible, however, that the frameshifts might be corrected in a small proportion of mRNAs during transcription or that ribosomal slippage occurs during translation, permitting translation of a complete product.

The \textit{T. paraluiscuniculi tprD2}-like sequences found in the \textit{tprC} and \textit{tprD} loci are virtually identical to the \textit{tprD2} allele present in other \textit{T. pallidum} isolates. Approximately 50\% of human syphilis isolates contain the \textit{tprD2} gene; some humans with venereal syphilis make antibodies to a TprD2-specific peptide (8). \textit{tprD2} is also found in \textit{T. pallidum} subsp. \textit{pertenue} and \textit{T. pallidum} subsp. \textit{endemicum}. The TprD2 antigen is predicted to be an outer membrane antigen and may provide functional diversity to individual isolates. It is notable that both \textit{tprD2}-like alleles in the rabbit treponeme contain authentic frameshifts introducing early terminations and generating a short predicted peptide sequence of only 196 amino acids (instead of 597). The frameshift is due to an extra G located at exactly the same nucleotide position in both loci, suggesting that the frameshifts are not artifactual and that these two alleles are nonfunctional. In contrast, the \textit{T. pallidum tprD2} homologue has been retained intact during evolution, and in the presence of selective advantage, it might have undergone neo-functionalization. This could provide advantages to particular \textit{T. pallidum} isolates, such as adaptation to specific tissues in the human host.

Due to the presence of frameshifts and premature stops in the subfamily I Tprs, we reasoned that only the NH$_2$-terminal portion of these genes is likely expressed and that the central and COOH-terminal regions are not translated. This is supported by our ELISA findings, where antibody reactivity was seen against the conserved subfamily I amino terminus and no reactivity was detected against the central region (TprD2-central) or the carboxyl terminus (3'-subfamily I peptides A and B). Alternative explanations for the lack of reactivity against the central and COOH-terminal regions are that these regions are not the target of the humoral antibody responses and that they are expressed at a very low level during infection. However, the recent demonstration that human syphilitic sera react against a 216-amino-acid peptide of the subfamily I Tprs carboxyl terminus (V. Sambri et al., unpublished data) supports the idea that the absence of reactivity to this particular region in the Cuniculi A strain is due not to lack of antigenicity but to lack of translation. This hypothesis is equally supported by the absence of detectable reactivity against the central region and carboxyl terminus of Cuniculi A subfamily II members (TprG1 and TprG2) and the TprG/I hybrid, with these regions being coded by sequences downstream of the frameshift position in their respective genes. No recombinant antigens were available to test reactivity against the amino terminus of these antigens due to difficulties in expressing this particular peptide region.

Based on the analysis of the predicted protein sequences, it appears that only the subfamily III Tpr proteins may be func-
tional molecules in *T. paraluiscuniculi*. There is a very high degree of conservation between the *T. paraluiscuniculi* and *T. pallidum* tprB and tprH genes, which are virtually identical. In contrast, there are significant sequence differences in their tprA, tprK, and tprL genes. tprA is an intact ORF in the rabbit treponeme but not in *T. pallidum* Nichols strain, where this ORF has an authentic frameshift due to the presence of only three CT repeats instead of four. In absence of full-length functional tprC, tprD, tprF, tprI, tprG, tprJ, and tprE genes, one could assume that tprA and the other subfamily III members having intact full-length coding sequences are playing an important role in *T. paraluiscuniculi* biology. Although this assumption may seem obvious from sequence analysis, ELISA antibody reactivity and proliferation assays do not entirely support this hypothesis.

Overall, antibody responsiveness to subfamily III Tpr antigens in *T. pallidum* isolates has been shown to vary in specificity and temporal pattern of reactivity elicited against individual Tpr proteins during infection (18). Of particular interest is the Nichols strain, in which the expression level of most subfamily III Tprs (except for TprK) seems to be lower than in other *T. pallidum* isolates. It has been suggested that this may reflect a high degree of adaptation to the rabbit, which by analogy could be extrapolated to *T. paraluiscuniculi* as well. The lack of antibody specificities during *T. paraluiscuniculi* infection is similar to that seen against subfamily III members.
in the Nichols strain, in which TprK is the only apparent target of the immune response. T-cell proliferation data confirm these observations, with TprK being the only target of the cellular immune response. As in *T. pallidum* (24), Cuniculi A T-cell epitopes were found in the TprK conserved regions, with the same peptides being recognized in both infections. The lack of antibody and T-cell responses to the other subfamily III Tprs (in the presence of intact ORFs) may reflect different expression patterns (very low levels of expression throughout infection) or lack of antigenicity of these proteins, or may indicate that these ORFs are actually be pseudogenes.

The tprK locus is of particular interest. It has been shown in *T. pallidum* that the TprK antigen contains seven variable regions targeted by the antibody response of the host and that it undergoes antigenic variation during infection with donor sites located in a ~4-kb region flanking the tprD gene (24, 7). As in *T. pallidum*, Cuniculi A TprK is the target of an early and strong immune response. The heterogeneity in the V regions of the tprK alleles in the Cuniculi A isolate suggests that its TprK may undergo antigenic variation too. Interestingly, a significant difference is the presence of limited diversity in the V regions in the rabbit treponeme, with the observed heterogeneity not being as impressive as in the human isolates. It has been postulated that the extensive diversity in the TprK antigen may represent mechanisms for immune evasion and adaptation to a changing environment in the host during infection. In this context, the overall lower diversity in the Cuniculi A TprK antigen might imply that *T. paraluiscuniculi* uses a smaller subset of TprK variants to achieve successful adaptation in its host.

So far, we have been able to obtain only a fragment of about 600 nucleotides from the corresponding Cuniculi A donor regions flanking the tprD gene by PCR amplification. We do not know at this time whether this is due to lack of binding sites for the primers, fragmentation, and different localization of the donor sites in the chromosome, or smaller donor regions in *T. paraluiscuniculi* than in *T. pallidum*.

The successful amplification of the tpr ORFs in *T. paraluiscuniculi* with primers based on the Nichols genome sequence of the flanking regions for each locus suggests sequence conservation at the primer binding sites and similar organizations of the ORFs (tprs and flanking ORFs) in the amplified regions of these two species. We sequenced a large number of tpr ORFs from several *T. pallidum* isolates and observed variations in sequence composition in the coding regions but not in their chromosomal locations, supporting earlier morphological and immunopathological observations that these are highly related organisms. However, we cannot completely rule out the presence of additional paralogues in the Cuniculi A chromosome. Alternative approaches, such as Southern blot analysis or the construction of genomic, subgenomic, and lambda libraries, have already been considered. Although technically feasible, *T. paraluiscuniculi* grows very slowly with very low bacterial yields, making it impractical to collect Percoll-purified treponemes (free of most contaminating rabbit DNA) in sufficient numbers to create these libraries. It is more likely that other approaches that require minimal amounts of DNA (such as whole-genome long-PCR fingerprinting) might yield more information without the need for large amounts of treponemal DNA.

It is intriguing to find five apparently nonfunctional tpr genes in *T. paraluiscuniculi* due to frameshifts and premature stops (tprC, tprD, tprG1, tprG2, and the hybrid tprG/I). It is likely that these genes were silenced during evolution after gene duplication generated the tpr family in an ancestor treponeme. One hypothesis is that the human and rabbit treponemes arose from a common predecessor containing a set of fully functional tpr genes. Later on, during adaptation to the genetic background of the rabbit, the subfamily I and II genes were then silenced by single-base insertions. However, to explain the presence of identical alleles in the tprC and tprD loci as well as in the tprG1 and tprG2 loci containing frameshifts at exactly the same positions, we need to assume that the original set of genes were composed of a smaller number of single-copy genes, some of which underwent further duplication after the frameshifts were introduced. The lack of functionality of these genes suggests that they are not essential for survival in the rabbit but may represent pathogenicity factors in *T. pallidum*. As mentioned above, we have not completely ruled out the possibility of other tpr genes elsewhere in the Cuniculi A chromosome, and ongoing studies in our laboratory will determine whether second functional copies of these genes are present in this strain and, also, whether other *T. paraluiscuniculi* strains have similar sets of genes and similar patterns of expression.

Besides the most obvious differences between the *T. pallidum* and *T. paraluiscuniculi* homologues presented here, small numbers of single synonymous and nonsynonymous nucleotide mutations can also be identified in the tpr sequences. The amino acid changes due to single-nucleotide mutations that might influence protein function can be observed throughout some Tpr sequences, suggesting selective evolutionary divergence. Nevertheless, silent mutations are also known to influence protein function by mediating in vivo protein folding changes or regulating gene transcription (9, 10). Although the sequence organization of and host immune responses to the Tpr antigens are being unraveled, the function of these proteins and the role in antigenicity or protein structure of the observed diversity due to single-nucleotide changes or more extensive sequence modifications still remain unclear.

ACKNOWLEDGMENTS

We are grateful to Heidi Pecoraro for manuscript preparation. This work was supported by NIH grants AI42143 (S.A.L.), AI34616 (S.A.L.), and AI43456 (W.V.V.) and the University of Washington Royalty Research Fund Award (A.C.L.). E.S.S. was supported by NIH institutional training grant AI07140 and a fellowship from the Achievement Rewards for College Scientists Foundation.

REFERENCES

Editor: A. D. O’Brien