Role for Cystic Fibrosis Transmembrane Conductance Regulator Protein in a Glutathione Response to Bronchopulmonary Pseudomonas Infection

Brian J. Day, Anna M. van Heekkeren, Elysia Min, and Leonard W. Velsor

Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado, and Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio

Received 6 November 2003/Returned for modification 2 December 2003/Accepted 2 January 2004

The lung maintains an elevated level of glutathione (GSH) in epithelial lining fluid (ELF) compared to serum. The mechanism(s) by which the lung maintains high levels of ELF GSH and factors that modulate them are largely unexplored. We hypothesized that lung cystic fibrosis transmembrane conductance regulator protein (CFTR) modulates GSH efflux in response to extracellular stress, which occurs with lung infections. Mice were challenged intratracheally with Pseudomonas aeruginosa, and on the third day of infection bronchoalveolar lavage fluid was obtained and analyzed for cytokines and antioxidants. Lung tissue antioxidants and enzyme activities were also assessed. P. aeruginosa lung infection increased levels of inflammatory cytokines and neutrophils in the ELF. This corresponded with a marked threefold increase in GSH and a twofold increase in urate levels in the ELF of P. aeruginosa-infected wild-type mice. A twofold increase in urate levels in the ELF was also observed among lung tissue antioxidants of P. aeruginosa-infected wild-type mice. There were no changes in markers of lung oxidative stress associated with the P. aeruginosa lung infection. In contrast with wild-type mice, the CFTR knockout mice lacked a significant increase in ELF GSH when challenged with P. aeruginosa, and this correlated with a decrease in the ratio of reduced to oxidized GSH in the ELF, a marker of oxidative stress. These data would suggest that the lung adapts to infectious agents with elevated ELF GSH and urate. Individuals with lung diseases associated with altered antioxidant transport, such as cystic fibrosis, might lack the ability to adapt to the infection and present with a more severe inflammatory response.

The lung maintains a 140-fold elevation of reduced glutathione (GSH) in epithelial lining fluid (ELF) compared to serum. Many pulmonary diseases, such as idiopathic pulmonary fibrosis and cystic fibrosis (CF), are associated with lower levels of GSH in the ELF than those in healthy individuals. The mechanism(s) by which the lung maintains reduced GSH in the ELF and whether this changes in response to lung inflammation is not fully understood. Our laboratory recently reported that mice deficient in CF transmembrane conductance regulator protein (CFTR) have decreased lung ELF GSH and a significant decrease in ELF GSH transport. To investigate the role of CFTR in modulating GSH efflux in response to extracellular stress, mice were challenged intratracheally with P. aeruginosa, and on the third day of infection bronchoalveolar lavage fluid was obtained and analyzed for cytokines and antioxidants. Lung tissue antioxidants were also assessed. P. aeruginosa lung infection increased levels of inflammatory cytokines and neutrophils in the ELF. This corresponded with a marked threefold increase in GSH and a twofold increase in urate levels in the ELF of P. aeruginosa-infected wild-type mice. A twofold increase in urate levels was also observed among lung tissue antioxidants of P. aeruginosa-infected wild-type mice. There were no changes in markers of lung oxidative stress associated with the P. aeruginosa lung infection. In contrast with wild-type mice, the CFTR knockout mice lacked a significant increase in ELF GSH when challenged with P. aeruginosa, and this correlated with a decrease in the ratio of reduced to oxidized GSH in the ELF, a marker of oxidative stress. These data would suggest that the lung adapts to infectious agents with elevated ELF GSH and urate. Individuals with lung diseases associated with altered antioxidant transport, such as cystic fibrosis, might lack the ability to adapt to the infection and present with a more severe inflammatory response.
data suggest that the maintenance of GSH and perhaps urate in the ELF is an important adaptive response during infection and ensuing inflammation.

MATERIALS AND METHODS

Animals. Wild-type male C57BL/6J mice (5 weeks old) purchased from Jackson Laboratories (Bar Harbor, Maine) were fed autoclaved Purina mouse chow 5010 and autoclaved tap water, which was available at all times. Mice were allowed to acclimate in the vivarium for at least 1 week before use. All mice were maintained in static isolator units on combination-size corn cob bedding (The Andersons, Maumee, Ohio) and placed in fresh cages immediately after surgical instillation of agarose beads. To test the role of CFTR in the GSH adaptive response, homozygous congenic C57BL/6J CFTR KO mice (B6.129P2-Cftrtm1Unc) were utilized (30). CFTR KO mice require a liquid elemental diet (Pepitmen, Glendale, Calif.); however, previous studies have shown that this does not affect ELF antioxidant levels (34).

Experimental model of endobronchial infection with P. aeruginosa. An agarose bead model of P. aeruginosa endobronchial infection was used as previously described (16). Briefly, agarose was mixed with tryptic soy broth containing mucoid P. aeruginosa strain M57-15, a clinical isolate from a CF patient, grown to late log phase. The agarose-bead mixture was added to mineral oil that was equilibrated at 50 to 55°C, rapidly stirred for 6 min at room temperature, and then cooled over 10 min. The agarose beads were washed once with 0.5% deoxycholic acid in phosphate-buffered saline, pH 7.4 (PBS), once with 0.25% deoxycholic acid in PBS, and four times with PBS. The beads were measured to be 90 μm in diameter by inverted light microscopy (range, 18 to 204 μm).

Quantitative bacteriology was performed on an aliquot of homogenized bead slurry to determine the number of CFU per milliliter (3.4 × 10^4 CFU/ml of slurry).

Groups of mice were anesthetized with intraperitoneal injections of 2.5% Avertin (2,2,2-tribromoethanol and tert-amyl alcohol in 0.9% NaCl administered at a dose of 0.015 ml/g of body weight). A transverse skin incision was made, and the trachea was visualized by blunt dissection. P. aeruginosa infection was achieved by transtracheal insertion of a 22-gauge 1-in. needle and instillation of an agarose bead slurry (50 μl) with or without P. aeruginosa (1.9 × 10^9 CFU/mouse).

After P. aeruginosa infection, most mice displayed clinical signs of infection with scruffy coat, moderate dehydration, and decreased activity. Mice did not appear severely ill before the third day after infection. Case Western Reserve University’s Institutional Animal Care and Use Committee approved all animal protocols. The Animal Resource Center at Case Western Reserve University is accredited by the Association for Assessment and Accreditation of Laboratory Animal Care.

Bronchoalveolar lavage and necropsy. Mice were killed on the third day after infection by carbon dioxide narcosis and exsanguinated by cardiac puncture. Blood plasma was collected for urea analysis (Sigma Diagnostics, St. Louis, Mo.).

Bronchoalveolar lavage was performed by cannulating the trachea in situ with a 37-μm polyethylene catheter (Zivic, Pittsburgh, Pa.) stained with hematoxylin and eosin using standard differential cell count was performed on cytocentrifuge preparations (Cytospin 3; Shandon, Pittsburgh, Pa.) stained with hematoxylin and eosin using standard morphometric methods. Following lavage, the right and left lungs were then removed and snap-frozen in liquid nitrogen. The lungs were ground into a fine powder using a liquid nitrogen-cooled mortar and pestle and then stored at −70°C until analysis. Aliquots of the ground tissue were carefully removed under liquid nitrogen as needed for subsequent analyses.

Analysis of cytokines in ELF. Protease inhibitors, phenylmethylsulfonyl fluoride, and EDTA were added to the BALF samples after collection, as described above. Murine tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, macrophage inflammatory protein 2 (MIP-2), and keratinocyte chemotactant (KC) were measured using commercially available enzyme-linked immunomagnetic bead ELISA kits (R&D Systems, Minneapolis, Minn.). The BALF supernatants were assayed in duplicate and compared to known standards, and the values were dilution corrected for the respiratory ELF volume by the urea dilution method (26). Values that fell below the limits of detection were assigned a value equivalent to the lowest standard dilution detected.

Glutathione analysis in BALF and lung tissue. A 500-μl cell-free aliquot of BALF was acidified with 5% metaphosphoric acid (150 μl/ml), cooled on ice, and centrifuged (10,000 × g for 10 min at 4°C) to remove precipitated proteins.

Ground lung tissue (~20 mg) was dissolved in 600 μl of PBS, acidified with 5% metaphosphoric acid, cooled, and centrifuged to remove precipitated proteins. Antioxidants in BALF and tissues were analyzed by high-performance liquid chromatography (HPLC) coupled with coulometric electrochemical detection (CoulArray model 5600; ESA Inc., Chelmsford, Mass.). Sample analysis was done using a 7-μm 53-mm C18 reverse phase (Platinum EPS C18 100A 3 μm; Alltech Associates Inc., Deerfield, Ill.) and a mobile phase of 125 mM potassium phosphate acetate in 1% acetonitrile at pH of 3.0. The electrode potentials in a four-channel electrode array were set at 100 (channel 1), 215 (channel 2), 485 (channel 3), and 650 mV (channel 4). Under these conditions, ascorbate, GSH, oxidized GSH (GSSG), and urate exhibited retention times of 3.1, 3.4, 4.4, and 5.1 min, respectively. The GSH signal was distributed across electrodes 2 to 4, with the dominant signal on channel 3. Ascorbate, GSSG, and urate produced signals on channels 1, 3, and 1, respectively. Concentrations of these antioxidants were determined from a 5-μl injection and quantified from a five-point calibration curve generated from standards that were prepared fresh daily.

Lung GR activity. Ground lung tissue (10 to 25 mg) was dissolved in 800 μl of cold homogenization buffer (50 mM potassium phosphate, 1 mM EDTA; pH 7.5) and centrifuged (8,500 × g for 10 min at 4°C), and the supernatant was retained for analysis. GSH reductase (GR) activity in the lung homogenate was determined spectrophotometrically (340 nm) from the rate of NADPH consumption by GR. GR activity was expressed as units per milligram of sample protein (Coomassie Plus; Pierce, Rockford, Ill.). A unit was defined as 1 micromole of NADPH consumed in a minute. Pellets from these homogenates were utilized for the determination of γ-glutamyltransf erase (GGT) activity.

Lung GGT activity. Ground lung tissue (10 to 35 mg) was dissolved in 1.0 ml of cold homogenization buffer (50 mM Tris-HCl, 5 mM EDTA, 1 mM 2-mercaptoethanol; pH 7.5) and centrifuged (5,500 × g for 15 min at 4°C), and the supernatant was retained for analysis. The GSH peroxidase (GPx) activity in the homogenate was determined using a commercially available kit (GPX-340; Oxis International Inc., Portland, Oreg.). GGT activity was expressed as units per milligram of sample protein (Coomassie Plus; Pierce). A unit was defined as 1 micromole of NADPH consumed in a minute. Pellets from these homogenates were utilized for the determination of γ-glutamyltransf erase (GGT) activity.

Lung GPx activity. Ground lung tissue (10 to 25 mg) was dissolved in 800 μl of cold homogenization buffer (50 mM potassium phosphate, 1 mM EDTA; pH 7.5) and centrifuged (6,500 × g for 10 min at 4°C), the pellets were resuspended in homogenization buffer (100 mM Tris-HCl, 10 mM serine, 0.1 mM EDTA; pH 7.6) and centrifuged (5,500 × g for 10 min at 4°C), and the supernatant was retained for GGT analysis. Pellets obtained from the homogenates for GR analysis were resuspended in homogenization buffer (100 mM Tris-HCl, 10 mM serine, 0.1 mM EDTA; pH 7.6) and centrifuged (5,500 × g for 10 min at 4°C), and the supernatant was retained for GGT analysis. A 200-μl aliquot of the supernatant was mixed with 1.0 ml of reagent solution (3.2 mM 5-carboxy-4-nitroaniline, 110 mM glycine-glycine, 110 mM Tris-HCl; pH 8.3). GGT activity was calculated from the rate of 3-carboxy-4-nitroaniline production (7) and compared to a standard curve generated from standards that were prepared fresh daily.

Lung TBARS. Oxidation of tissue lipids produces various aldehydes that can be measured colorimetrically by their reaction with thiobarbituric acid. Approximately 25 μg of ground lung tissue was dissolved in 50 mM phosphate buffer (pH 7.4) containing 1 mM butylated hydroxytoluene. An aliquot of the sample was then acidified with an equal volume of phosphoric acid. Thiobarbituric acid (0.1 M) was added, and the mixture was heated at 90°C for 35 min. The thiobarbituric acid-reactive substances (TBARS) in the sample were extracted with n-butanol, and the absorbance at 535 nm was measured using a plate reader (SpectraMax 340PC; Molecular Devices, Sunnyvale, Calif.). TBARS were calculated from a malondialdehyde standard curve and normalized for protein content (6).

HPLC analysis for 8OH2dG in lung DNA. DNA from mouse lung tissue was obtained by a chloroform-isooamyl alcohol extraction of proteinase K-digested lung homogenates (34). The purified DNA was then hydrolyzed to nucleosides with sodium hydroxide. Samples were analyzed for 8-hydroxy-2-deoxyguanosine (8OH2dG) and 2-deoxyguanosine (2dG) by HPLC coupled with in-line coulometric electrochemical and UV detection (CoulArray model 5600; ESA Inc., Chelmsford, Mass.). Sample analysis was done using a 7-μm 53-mm C18 reverse phase (Platinum EPS C18 100A 3 μm; Alltech Associates Inc., Deerfield, Ill.) and a mobile phase of 125 mM potassium phosphate acetate in 1% acetonitrile at pH of 3.0. The electrode potentials in a four-channel electrode array were set at 100 (channel 1), 215 (channel 2), 485 (channel 3), and 650 mV (channel 4). Under these conditions, 8-OH2dG and 2dG were separated using a 5-μl injection and quantified from a five-point calibration curve generated from standards that were prepared fresh daily.

Data were analyzed using the Student’s two-tailed t test or one-way analysis of variance followed by Tukey’s honestly significant difference test. Two-tailed tests were used to assess differences between groups, and the level of significance was set at 0.05. All data are expressed as means ± standard error of the mean.
model 5600; ESA Inc., Chelmford, Mass.) for 8OH2dG and 2dG, respectively (39). Sample analysis was done using a 4.6- by 150-mm, C18 reverse-phase column (YMCbasic; YMC Inc., Wilmington, N.C.) with a mobile phase of 100 mM sodium acetate in 5% methanol at pH 5.2 (34). 2dG was detected at 265 nm, while 8OH2dG was detected electrochemically with electrode potentials of 285, 365, and 435 mV. Under these conditions, 2dG and 8OH2dG had retention times of approximately 7.4 and 9.5 min, respectively. Nucleoside concentrations were calculated from a five-point standard curve.

Statistical analysis. Data are expressed as the mean ± standard error of the mean. Statistical analyses were performed using an unpaired t test and, in instances where the variances were not equal between groups, Welch’s unpaired t test was utilized using the statistical package in Prism version 3 (GraphPad, San Diego, Calif.). The criterion for statistical significance was a P value of ≤0.05.

RESULTS

Effect of *P. aeruginosa* infection on inflammatory indices in the BALF. Wild-type mice inoculated with *P. aeruginosa* had significant weight loss (22%) from their initial body weight by the third day of infection (Table 1). Some of the infected mice displayed mild physical signs of ill health, manifested as an unkempt or scruffy hair coat. There was no mortality in the mice after inoculation with infected beads. Mice were assessed for evidence of lung inflammation after *P. aeruginosa* infection by measuring changes in BALF cytokines and chemokines that are commonly associated with inflammatory responses, namely TNF-α, IL-1, IL-6, MIP-2, and KC (16). In addition, differential cell counts were performed on cells recovered from the BALF. As shown in Table 1, there were significant increases in all BALF cytokines and chemokines examined from the *P. aeruginosa*-infected mice that ranged from 7- to 70-fold (MIP-2 [73-fold] > IL-6 [29-fold] > IL-1 [19-fold] > KC [7-fold] > TNF-α [7-fold]). The large 70-fold increase in MIP-2 correlated with the massive cellular infiltration of neutrophils that accounted for 89% of the total BALF leukocytes.

Effect of *P. aeruginosa* infection on lung antioxidant levels. The effect of *P. aeruginosa* lung infection on ELF antioxidant levels was determined. *P. aeruginosa* infection had differential effects on ELF ascorbate, GSH, and urate. Whereas *P. aeruginosa* infection produced no change in ELF ascorbate levels, urate and GSH levels were increased two- and threefold, respectively (Fig. 1). The ratio of reduced to oxidized GSH in the

TABLE 1. Inflammation markers

| Parameter | Control | PA | P value
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight change</td>
<td>1.5 ± 0.6</td>
<td>-21.8 ± 1.9</td>
<td>0.001</td>
</tr>
<tr>
<td>% PMN</td>
<td>0.0 ± 0.0</td>
<td>1.1 ± 0.3</td>
<td>0.01</td>
</tr>
<tr>
<td>TNF-α</td>
<td>1.4 ± 0.1</td>
<td>11.1 ± 3.6</td>
<td>0.03</td>
</tr>
<tr>
<td>IL-1β</td>
<td>0.5 ± 0.0</td>
<td>10.2 ± 3.3</td>
<td>0.02</td>
</tr>
<tr>
<td>IL-6</td>
<td>0.9 ± 0.1</td>
<td>26.6 ± 8.5</td>
<td>0.02</td>
</tr>
<tr>
<td>MIP-2</td>
<td>0.5 ± 0.0</td>
<td>37.2 ± 13.1</td>
<td>0.03</td>
</tr>
<tr>
<td>KC</td>
<td>0.9 ± 0.1</td>
<td>7.3 ± 2.2</td>
<td>0.02</td>
</tr>
</tbody>
</table>

* Data are percent change from initial body weight at the start of the study.
* Data are percent presented as 10^6 PMN/ml of BALF.
* Data are presented as percentage of PMNs of the total cells recovered in the BALF.
* Data are presented as nanograms per milliliter of ELF.
* P values were determined using an unpaired t test with Welch’s correction for unequal variances.

FIG. 1. Differential effects of *P. aeruginosa* infection on ELF antioxidant levels. Groups of six to eight wild-type mice were instilled with agarose beads with and without *P. aeruginosa*, and bronchoalveolar lavage was performed on the third day of infection. Values were corrected for lavage dilution using the urea method and expressed as ELF concentrations. *P. aeruginosa* infection increased GSH (A) and urate (D) ELF levels three- and twofold, respectively. *P. aeruginosa* infection had similar effects on the level of GSSG (B) but no effect on ascorbate (C) levels.
ELF of *P. aeruginosa*-infected wild-type mice was similar to that in their uninfected counterparts despite a threefold elevation in the ELF levels of GSSG (Table 2). Changes in the ELF antioxidant concentrations were mirrored in the lung tissue of the *P. aeruginosa*-infected wild-type mice; however, only changes in urate levels reached statistical significance (Fig. 2). Only minor changes were seen in lung tissue enzymes involved in GSH catabolism and recycling (Fig. 3). The activity of GGT, the cell membrane protein involved in the breakdown of extracellular GSH, was increased 15% in the lungs of *P. aeruginosa*-infected wild-type mice. In contrast GR, the enzyme involved in recycling intracellular GSSG back to GSH, was decreased 30% in the lungs of *P. aeruginosa*-infected wild-type mice; however, this decrease failed to reach statistical significance. Finally, the activity of GPx, which is a family of enzymes that utilize GSH to detoxify cellular peroxides, was unchanged in the lungs of *P. aeruginosa*-infected mice. The increase in GGT activity suggests that the lung epithelial cells are actively recycling the extracellular GSH in the ELF.

Effect of *P. aeruginosa* infection on lung markers of oxidative stress. Oxidative stress occurs when there is an imbalance between the steady-state levels of oxidants and antioxidants. Since the levels of both oxidants and antioxidants can change in response to each other, markers of lipid and DNA oxidation in the lungs of mice 3 days postinfection were determined. The formation of TBARS in lung tissue homogenates was used as an index of lipid oxidation. No significant differences in TBARS concentrations were observed between the lungs from uninfected and *P. aeruginosa*-infected wild-type mice (Table 2). To assess oxidation of DNA, the formation of 8OH2dG was used. Again, no significant differences in lung 8OH2dG levels were found between the control and *P. aeruginosa*-infected wild-type mice (Table 2). It is apparent that, under the conditions employed in these studies, there was no evidence to indicate that the lung tissue of *P. aeruginosa*-infected animals was subjected to any significant oxidative stress.

Role of CFTR in GSH efflux in response to *P. aeruginosa* lung infection. To investigate the mechanism behind the *P. aeruginosa*-stimulated increase in ELF GSH, congenic homozygous C57BL/6J CFTR KO mice were infected with *P. aeruginosa*, and their lungs were lavaged 3 days postinfection. In contrast to wild-type mice, the CFTR KO mice lacked a significant increase in reduced GSH in their ELF (Fig. 4A). In addition, the *P. aeruginosa*-infected CFTR KO mice had an increase in the levels of oxidized GSSG in their ELF. Consequently, the ratio of reduced to oxidized glutathione (GSH/GSSG) dramatically decreased in the CFTR KO *P. aeruginosa*-infected mice (Fig. 4B). A decrease in the GSH/GSSG ratio is often used as an index of oxidative stress (18). These data suggest that a functional CFTR is required for the lung to mount an adaptive GSH response to *P. aeruginosa* infection.

DISCUSSION

The mechanism(s) by which the lung maintains high levels of GSH in the ELF and factors that modulate them are largely unexplored. In these studies, we sought to determine the lung’s antioxidant response to a mucoid *P. aeruginosa* infection. Mice inoculated with *P. aeruginosa*-laden agarose beads have elevations in proinflammatory mediators and chemokines compared to uninfected controls. This response peaks between 2 and 3 days after inoculation with *P. aeruginosa*-infected beads (16).
This study also demonstrated that the *P. aeruginosa* infection provokes a strong inflammatory response in the lungs by the third day of infection. This response is characterized by elevations in proinflammatory cytokines, chemokines, and a pronounced influx of neutrophils. Concomitant with this inflammatory response was an adaptive response by the lung of increasing levels of ELF antioxidants, namely, a twofold increase in urate and a threefold increase in GSH levels. This extracellular antioxidant adaptive response in wild-type mice appears to have minimized any *P. aeruginosa*-induced oxidative damage to lung tissue, as evidenced by the lack of increased tissue lipid or DNA oxidation and no change in the GSH/GSSG ratio in the ELF. In contrast, the CFTR KO mice lacked an adaptive GSH response to *P. aeruginosa* infection and had a decreased ELF GSH/GSSG ratio, an index of oxidative stress (18). These results suggest that the lung defends itself against oxidative damage from inflammatory stimuli by elevating the levels of extracellular antioxidants, most likely through stimulation of apical transport, and for GSH this requires a functional CFTR protein.

Urate is an important lung antioxidant that has high rates of reaction with air pollutants such as ozone (20). Urate is the final product of purine degradation in humans, and it is likely that the increase in urate in the ELF and lung tissue observed after *P. aeruginosa* infection is due to increased purine degradation. It is interesting that xanthine oxidase is a key enzyme in the purine degradation pathway that paradoxically produces both the antioxidant urate and the reactive oxygen species superoxide and hydrogen peroxide. Furthermore, an elevated xanthine oxidase activity has been reported in CF patients (15). However, further studies are necessary to determine which enzyme(s) in purine degradation is being stimulated, the mechanism, and the importance of these findings in the pathophysiology associated with lung infection.

CF is a common recessive genetic disorder involving over 700 mutations that produce a defective CFTR protein (28).

FIG. 3. Differential effects of *P. aeruginosa* infection on lung GSH-utilizing enzymes. Groups of six to eight wild-type mice were instilled with agarose beads with and without *P. aeruginosa*, and lung tissue homogenate enzyme activities were assessed on the third day of infection. (A) *P. aeruginosa* infection increased the enzyme activities of GGT, which is involved in recycling GSH from the ELF, by 15%. (B) *P. aeruginosa* infection decreased the activity of glutathione reductase, which is involved in recycling intracellular GSH, by 30%. (C) *P. aeruginosa* infection had no effect on glutathione peroxidase, which is involved in the detoxification of lipid peroxides.

FIG. 4. Lack of a GSH adaptive response and oxidative stress in *P. aeruginosa*-infected CFTR KO mice. Groups of four to eight CFTR KO mice were instilled with agarose beads with and without *P. aeruginosa*, and bronchoalveolar lavage was performed on the third day of infection. Values were corrected for lavage dilution using the urea method and are expressed as ELF concentrations. (A) *P. aeruginosa* infection significantly increased the levels of GSSG by threefold but did not affect the levels of reduced GSH. (B) These changes in GSSG resulted in a substantial decrease in the ratio of GSH to GSSG, which is an index of oxidative stress.
CFTR is a member of the ABC cassette family of transporter proteins and is thought to predominantly regulate chloride conductance in secretary epithelial cells (21, 36). Defective function of CFTR in airway epithelial cells and submucosal glands results in a chronic state of pulmonary disease that is manifested by airway obstruction and recurrent lung infections (5). Despite 20 years of investigation, it is still unclear how impairment in CFTR function contributes to CF lung disease. Adult CF patients are reported to have diminished levels of GSH in their ELF (27) that are associated with an excessive inflammatory response during recurrent endobronchial P. aeruginosa infections (24). It has been debated whether the changes in ELF GSH observed in CF patients are a consequence of the recurrent endobronchial infections or a result of CFTR dysfunction (33).

Our investigators recently reported that uninfected mice deficient in CFTR have decreased lung ELF GSH (34), and other studies have shown that CFTR can regulate GSH transport (11, 22, 23). CFTR KO mice are known to have an exaggerated cytokine response and a higher rate of mortality in response to lung infection with P. aeruginosa (16). The present studies demonstrated that wild-type mice responded to P. aeruginosa infection with elevated ELF GSH levels, whereas this response was greatly attenuated in the CFTR KO mice. These data suggest that the lung may adapt to increased oxidation of reduced GSH in the ELF by stimulating apical transport of reduced GSH through CFTR to maintain redox balance in the ELF. Recent studies have suggested that this GSH in the ELF can protect the epithelium against hypochlorous acid, a product of stimulated neutrophils, and its oxidation of membrane proteins that alter membrane currents (35). In addition, GSH can react with reactive nitrogen species to form S-nitroso glutathione (GSNO), which has bronchodilatory properties (12) and is deficient in CF patients (14). GSNO is also important in the maturation of functional CFTR (39). It is interesting that GGT is a key enzyme in GSNO metabolism (17) and is elevated during P. aeruginosa infection. Together, these findings support the notion that individuals with CF may have a diminished adaptive GSH response towards P. aeruginosa lung infections, and this plays a role in the excessive inflammatory response and increased mortality previously reported (24).

It is interesting to speculate whether CFTR and/or MRP polymorphisms may be associated with other lung diseases and contribute to diminished GSH adaptive responses during infection or environmental exposures that may increase one’s risk for greater morbidity and mortality. Within the ABC cassette family, both CFTR and MRP2 are known to be expressed apically and transport GSH (1, 22). Genetic variations are common in ABC cassette proteins, and 779 single nucleotide polymorphisms (SNPs) have been recently reported in a Japanese population for eight genes in the ABC cassette family. In this study, 58 SNPs in the CFTR gene and 41 in the MRP2 gene were reported (28). One out of every 20 persons in the United States Caucasian population is a heterozygous carrier of a CFTR mutation (19). Some studies have already revealed that patients with pulmonary diseases, such as disseminated bronchiectasis (13), asthma, and chronic obstructive pulmonary disease, have a higher frequency of carrying a CFTR mutation (32). It is currently unknown whether SNPs in the MRP genes occur at higher frequencies in these or other pulmonary diseases. Further studies are needed to determine whether any of these SNPs produce functional changes in GSH adaptive responses in the lung.

In summary, this is the first report to our knowledge that lung CFTR modulates GSH ELF levels in response to P. aeruginosa lung infections. These data support the concept that individuals who lack functional CFTR and/or apically expressed MRPs may be at increased risk for lung damage associated with P. aeruginosa infectious processes and that diminished GSH adaptive responses may actively contribute to the progressive lung dysfunction and destruction that occurs in CF.

ACKNOWLEDGMENTS

This work was supported in part through funding by the National Institutes of Health (HL75523, DK48996, DK43999, DK48994, HL50527, and DK27651) and funding provided by the Cystic Fibrosis Foundation (Core Center grant and research grants).

We express appreciation to Chris Statt, Heidi Carroll, Lisa Shyjka, Jerry Chipuk, Lisa Hogue, Christiaan van Heeckeren, Merle Fleischer, and Alma Wilson for providing their expert technical support.

REFERENCES

GLUTATHIONE AND PSEUDOMONAS LUNG INFECTION IN MICE

