Effect of Inactivation of the Global Oxidative Stress Regulator oxyR on the Colonization Ability of Escherichia coli O1:K1:H7 in a Mouse Model of Ascending Urinary Tract Infection

James R. Johnson,1,2,* Connie Clabots,1,2 and Henry Rosen3

Mucosal and Vaccine Research Center, Minneapolis Veterans Affairs Medical Center,1 and Department of Medicine, University of Minnesota,2 Minneapolis, Minnesota, and Department of Medicine, University of Washington, Seattle, Washington3

Received 29 September 2004/Returned for modification 9 November 2004/Accepted 12 October 2005

To survive within the host urinary tract, Escherichia coli strains that cause urinary tract infection (UTI) presumably must overcome powerful oxidant stresses, including the oxygen-dependent killing mechanisms of neutrophils. Accordingly, we assessed the global oxygen stress regulator OxyR of Escherichia coli as a possible virulence factor in UTI by determining the impact of oxyR inactivation on experimental urovirulence in CBA/J and C57BL (both wild-type and p47phox−/−) mice. The oxyR and oxyS genes of wild-type E. coli strain Ec1a (O1:K1:H7) were replaced with a kanamycin resistance cassette to produce an oxyRS mutant. During in vitro growth in broth or human urine, the oxyRS mutant exhibited the same log-phase growth rate (broth) and plateau density (broth and urine) as Ec1a, despite its prolonged lag phase (broth) or initial decrease in concentration (urine). The mutant, and oxyR mutants of other wild-type ExPEC strains, exhibited significantly increased in vitro susceptibility to inhibition by H2O2, which, like the altered growth kinetics observed with oxyRS inactivation, were reversed by restoration of oxyR on a multiple-copy-number plasmid. In CBA/J mice, Ec1a significantly outcompeted its oxyRS mutant (by >1 log10) in urine, bladder, and kidney cultures harvested 48 h after perurethral inoculation of mice, whereas an oxyR-complemented mutant exhibited equal or greater colonizing ability than that of the parent. Although C57BL mice were less susceptible to experimental UTI than CBA/J mice, wild-type and p47phox−/− C57BL mice were similarly susceptible, and the oxyR mutant of Ec1a was similarly attenuated in C57BL mice, regardless of the p47phox genotype, as in CBA/J mice. Within the E. coli Reference collection, 94% of strains were positive for oxyR. These findings fulfill the second and third of Koch’s molecular postulates for oxyR as a candidate virulence-facilitating factor in E. coli and indicate that oxyR is a broadly prevalent potential target for future preventive interventions against UTI due to E. coli. They also suggest that neutrophil phagocyte oxidase is not critical for defense against E. coli UTI and that the major oxidative stresses against which OxyR protects E. coli within the host milieu are not phagocyte derived.

Extraintestinal infections due to Escherichia coli constitute an enormous health problem, accounting for millions of infection episodes, billions of dollars of direct health care costs, and an estimated 40,000 deaths from sepsis annually in the United States alone (42). The urinary tract is the single most common site of E. coli infection, and E. coli is the most common cause of urinary tract infection (UTI). However, E. coli can infect almost any anatomical site; it is also a prominent cause of neonatal meningitis, ascending cholangitis, spontaneous bacterial peritonitis, and nosocomial pneumonia (42).

Most extraintestinal E. coli infections are due to specialized E. coli strains, termed extraintestinal pathogenic E. coli (ExPEC), that possess the requisite virulence properties to overcome host defenses, invade and/or hold host tissues, and incite a noxious inflammatory response (17, 21). Particularly in view of the increasing prevalence of antimicrobial resistance in E. coli (9, 27, 47) and the climbing incidence of E. coli sepsis (30, 42), nonantibiotic preventive measures are sorely needed, including possible interventions directed against E. coli virulence factors (25, 33).

Polymorphonuclear leukocytes (PMNs) constitute an important host defense against many acute bacterial pathogens, including E. coli. Within the urinary tract, contact with E. coli induces host uroepithelial cells to secrete interleukin-8, which recruits circulating PMNs from the vasculature into the uroepithelium and urinary space (1, 2). The PMN influx is crucial for bacterial clearance, as shown by the persistence of bacteria and absence of PMN infiltration observed in lipopolysaccharide-nonresponsive C3H/HeJ (TLR4-deficient) (36) mice following experimental bladder challenge with a urovirulent E. coli strain (36), in contrast to the brisk acute inflammatory response and rapid bacterial clearance observed with normal lipopolysaccharide-responsive C3H/HeN mice (10, 11, 46). The recruited PMNs phagocytose E. coli and undergo a respiratory burst, which generates toxic oxygen products that kill the bacteria, both directly and via secondary toxic products such as hypohalous acids (28). Similar processes presumably occur during E. coli infections at other anatomical sites (17, 42). Thus, to survive encounters with PMNs, ExPEC strains must defend themselves against an array of oxidative and nonoxidative antimicrobial systems.

The E. coli OxyR regulon comprises a variety of oxidant...
stress response genes (31, 49). Phagocytosis of \textit{E. coli} strain Ec1a by NADPH oxidase-competent, but not oxidase-deficient, human neutrophils increases mRNA abundance for a number of the OxyR regulon genes (44), suggesting OxyR-mediated enhancement of gene transcription in response to PMN-generated oxidants. Disruption of the chromosomal region encoding OxyR and an adjacent regulatory RNA, oxyS, renders \textit{E. coli} strain Ec1a hypersusceptible to killing by PMN antimicrobial systems and has a lesser impact on bacterial killing by oxidase-deficient neutrophils (44).

Because of the critical importance of PMNs in urinary host defense (11, 46), we hypothesized that OxyR might contribute to \textit{E. coli} urovirulence, which, if true, would make it a potential target for nonantibiotic preventive measures. Accordingly, we assessed the effect on urovirulence of \textit{oxyR} inactivation, followed by restoration of the OxyR phenotype by complementation, in a urovirulent wild-type \textit{E. coli} background, using an established mouse model of ascending, unobstructed UTI. Likewise, we assessed the effect of inactivation of host phagocyte oxidase (in p47phox), with a 1,264-nucleotide (nt) kanamycin resistance cassette (bottom of figure). \textit{pACYC184oxyR} was created by cloning into \textit{pACYC184} a 1,463-nucleotide BamHI-EcoRV genomic fragment from Ec1a that included 90% of \textit{oxyS} and the entirety of \textit{oxyR}, under their native promoters (top of figure).

\textbf{FIG. 1.} Construction of Ec1a\textit{oxyR} and \textit{pACYC184oxyR}. Ec1a-\textit{oxyR} was created from wild-type strain Ec1a by replacing 1,085 bases in \textit{oxyRS}, including the first 884 of 918 bases in \textit{oxyR} and the first 103 of 110 bases in \textit{oxyS}, with a 1,264-nucleotide (nt) kanamycin resistance cassette (bottom of figure). \textit{pACYC184oxyR} was created by cloning into \textit{pACYC184} a 1,463-nucleotide BamHI-EcoRV genomic fragment from Ec1a that included 90% of \textit{oxyS} and the entirety of \textit{oxyR}, under their native promoters (top of figure).
TABLE 1. Inhibition by 10 μmol H₂O₂ of wild-type *Escherichia coli* strains, their oxyRS mutants, and oxyRS-complemented mutants

<table>
<thead>
<tr>
<th>Strain</th>
<th>Mean inhibition zone diam* ± SD (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(P value versus ΔoxyRS mutant*)</td>
</tr>
<tr>
<td>Wild type</td>
<td>Complemented mutant*</td>
</tr>
<tr>
<td>Ec1a</td>
<td>18.3 ± 1.3 (0.001)</td>
</tr>
<tr>
<td>CP9</td>
<td>19.0 ± 1.4 (<0.001)</td>
</tr>
<tr>
<td>RS218</td>
<td>19.0 ± 1.2 (0.001)</td>
</tr>
</tbody>
</table>

* Mean of four determinations per strain, once daily for 4 days. All strains were tested in parallel each day.
* P values (by two-tailed t test) are for comparisons of the wild type or complemented mutant versus the ΔoxyRS mutant. All comparisons of the wild type versus complemented mutant yielded a P of >0.10.
* Complemented mutant was the ΔoxyRS mutant transformed with pACYC184-oxyRS.

culture was compared with the actual test strain. This was done by using randomly amplified polymorphic DNA analysis (5, 23) and assessment of oxyR status (by PCR, using primers OxyRF6 and OxyRR7) and H₂O₂ susceptibility (by agar diffusion, as described above). The ratio of the two tests in postmortem mouse cultures (output ratio) was adjusted for the test strains' ratio in the inoculum suspension (input ratio) to derive the competitive index (CI) for each mouse infection culture.

Neutrophil oxidase-deficient (p47phox−/−) mice. For the initial virulence experiments (above), CBA/J mice were used (Harlan Sprague-Dawley, Indianapolis, IN). Since p47phox−/− mice in the CBA/J background were not available, C57BL mice (normal and p47phox−/−) were obtained from Jackson Laboratories (Bar Harbor, ME) (35). Experimental methods were as described above. The study design was as follows. Each week for 2 weeks, five normal and five p47phox−/− C57BL mice were inoculated in parallel with a suspension of Ec1a and Ec1aΔoxyR. Comparisons were made of total bacterial counts in C57BL versus (previously studied) CBA/J mice, total bacterial counts in normal versus (concurrent) p47phox−/− C57BL mice, and relative (competitive) bacterial counts for Ec1a versus Ec1aΔoxyR in C57BL mice, both overall and stratified by p47phox status.

Statistical methods. Comparisons of proportions were tested using Fisher's exact test (two-tailed). Comparisons involving inhibition zone diameters or absolute bacterial counts were tested using an unpaired t test (two-tailed), whereas those involving CIs were tested using the Wilcoxon rank sum test, with zero used as the comparator for each culture's log₁₀ of the CI (log₁₀ of CI) value.

RESULTS

Effect of oxyRS knockout on the H₂O₂ susceptibility of Ec1a and other ExPEC strains. The oxyRS mutants of strains Ec1a, CP9, and RS218 all exhibited significantly larger zones of inhibition around filter disks impregnated with 10 μmol H₂O₂ than did the corresponding parent strains, indicating enhanced H₂O₂ susceptibility with inactivation of oxyRS (Table 1). Inhibition zones were restored to parental size by complementation in trans with an oxyR-expressing pACYC184 construct, confirming the specificity of the observed effect for oxyR (Table 1).

Growth of Ec1a and Ec1aΔoxyRS and their transformants in broth and urine. During in vitro growth in broth (whether LB, MH, or anaerobic), under shaking or static conditions, Ec1aΔoxyRS exhibited a 2-h to 4-h lag phase in comparison with the parent before beginning log-phase growth. Thereafter, it exhibited a maximal growth rate similar to that of the parent and ultimately achieved the same plateau density (Fig. 2, top). The mutant’s growth pattern was restored to that of a parental vector control by complementation in trans with an oxyR-expressing pACYC184 construct, confirming the specificity of the effect for oxyR (Fig. 2, top).

During ex vivo incubation in filter-sterilized human urine, the parent Ec1a exhibited a 2-h lag phase, followed by brisk log-phase growth (Fig. 2, middle). In contrast, after being added to urine, the oxyRS mutant rapidly dropped to undetectable concentrations and remained undetectable throughout the 8-h sampling period. However, by 24 h, it had regrown to the parental level (Fig. 2, middle). Complementation of the mutant with oxyRS rendered it resistant to this inhibitory (or bactericidal) effect of urine, resulting in a urine growth curve indistinguishable from that of the parental vector control (Fig. 2, bottom). All of these growth effects were observed reproducibly in multiple replicate experiments (not shown).

Comparative urovirulence of Ec1a and Ec1aΔoxyRS in the mouse UTI model. Ec1a and its isogenic oxyRS mutant were administered perorally as a mixed inoculum to female CBA/J mice (18 to 25 g body weight) in a competition model of ascending UTI, using controlled inoculation conditions that avoid immediate vesicoureteral reflux. In urine, bladder, and kidney cultures harvested from mice 48 h after inoculation, according to analysis of the CI, the parent strain outcompeted the mutant by a median of >1.0 log₁₀ in urine and bladders and >2.0 log₁₀ in kidneys (Fig. 3, top). For bladders and both kidneys, the mutant’s attenuation in colonization ability was highly statistically significant (Fig. 3). This supported the hypothesis that a functional oxyRS contributes to urinary tract colonization by strain Ec1a.

Complementation of Ec1aΔoxyRS fulfillment of Koch’s molecular postulates. To exclude the possibility that the attenuated urovirulence of Ec1aΔoxyRS was due to alterations other than inactivation of oxyRS (e.g., polar effects or independent trans secondary mutations), an oxyRS transformant of Ec1aΔoxyRS (i.e., Ec1aΔoxyRS/pACYC184oxyRS) was used to compete against a parental plasmid control (i.e., Ec1a/pACYC184) in the same mouse model system, with chloramphenicol administered to the mice to maintain selective pressure for the plasmids. The colonization ability of the complemented mutant, as assessed 48 h after inoculation, equaled (bladders) or significantly exceeded (urine and both kidneys) that of the parental plasmid control (Fig. 3). This confirmed oxyRS as a significant contributor to experimental urovirulence in strain Ec1a.

Effect of host phagocyte oxidase inactivation. We next assessed the importance of the host-generated oxidative environment to (i) the overall host susceptibility to *E. coli* UTI and (ii) the virulence attenuation resulting from oxyR inactivation in strain Ec1a. Weekly for 2 weeks, 10 female C57BL mice (five wild-type and five p47phox−/−, i.e., CGD phenotype) were challenged per urethra with a mixture of Ec1a and Ec1aΔoxyR. Total bacterial concentrations were used to assess host susceptibility, whereas the CI (output ratio for Ec1a versus Ec1aΔoxyR, normalized to the input ratio) was used to assess the relative recovery of the two bacterial genotypes from each culture-positive urine, bladder, and kidney specimen as harvested 48 h postinoculation.

Overall, C57BL mice exhibited a lower susceptibility to kidney infection with Ec1a than did CBA/J mice (4 of 40 kidneys culture positive for C57BL versus 32 of 80 for CBA/J; P < 0.001). However, among C57BL mice, the CGD phenotype was associated with no greater susceptibility to *E. coli* UTI than the normal phagocyte oxidase phenotype. That is, in the two p47phox genotypes (p47phox−/− and normal), a similar proportion of postmortem samples was culture positive (urine, 6 of 7...
versus 6 of 8 in each genotype; bladder, 10 of 10 in each genotype; kidney, 2 of 20 in each genotype). Likewise, among the culture-positive samples, total bacterial counts were similar ($P > 0.10$ for each comparison between genotypes) (data not shown).

As previously observed in CBA/J mice, the oxyR mutant exhibited a significant colonization deficit at each site sampled (median log$_{10}$ CI for urine, 1.35 [$P = 0.005$]; bladders, 0.79 [$P = 0.002$]; and kidneys, 1.22 [$P = 0.045$]) relative to parent strain Ec1a. The virulence attenuation associated with oxyR inactivation was apparent in each C57BL genotype, and to similar degrees, regardless of the phagocyte oxidase phenotype ($P > 0.10$ for urine, bladders, kidneys, and all sites combined) (data not shown).

Phylogenetic distribution of oxyR. Among the 72 members of the ECOR collection, oxyR was reproducibly detected by both PCR and probe hybridization in 63 strains (88%), only by probe in four strains (6%), only by PCR in one strain (1.4%), and by neither modality in four strains (6%). Thus, 68 (94%) of the 72 ECOR strains were oxyR positive according to one or both modalities. PCR negativity but probe positivity for oxyR (suggesting the presence of a variant version of oxyR) was significantly more common within group B1 (3 of 16, 19%) than among other ECOR strains (1 of 56, 2%; $P = 0.03$). Interestingly, the only non-B1 strain that exhibited this PCR-negative, blot-positive pattern was ECOR47 (group D), a pre-1980 sheep isolate from New Guinea that is a member of, or is closely related to, the recently described multidrug-resistant $E. \text{coli}$ CGA (18, 20, 29). Accordingly, additional representatives of CGA were studied. All 14 (100%) recent human clinical isolates of CGA from across the United States that were tested exhibited the same PCR-negative, blot-positive oxyR genotype as did ECOR47 (not shown).

DISCUSSION

We found that inactivation of oxyRS in wild-type ExPEC strain Ec1a significantly increased its susceptibility to H_2O_2 and attenuated its virulence in a mouse model of ascending UTI in two different mouse strains that differed in their susceptibilities to kidney infection. Moreover, complementation of oxyR with a multiple-copy-number recombinant plasmid restored the mutant’s H_2O_2 tolerance and bladder-colonizing ability to parental levels and yielded supranormal kidney col-

![FIG. 2. Representative growth curves (in broth and urine) for *Escherichia coli* strains Ec1a and Ec1aΔoxyRS and transformants of each. Bacterial concentrations at each time point were determined by serial dilution plating. (Top) Growth in Mueller-Hinton broth of Ec1a, Ec1aΔoxyRS, Ec1apACYC184, and Ec1a$\Delta\text{oxyRS}/\text{pACYC184}$.$\text{oxyR}$. Testing of all four strains was done in parallel on the same day and was replicated on multiple days. Chloramphenicol supplementation was used with Ec1apACYC184 and Ec1a$\Delta\text{oxyRS}/\text{pACYC184}$.$\text{oxyR}$. The extended lag phase observed with Ec1aΔoxyRS was highly reproducible, whereas no consistent differences were noted among the other three strains. (Middle) Growth in sterile human urine of Ec1a and Ec1aΔoxyRS. The mutant was reproducibly undetectable from 2 to 4 h out to the 8-h time point but achieved parental densities by the 24-h time point. (Bottom) Growth in sterile human urine (supplemented with chloramphenicol) of Ec1a and Ec1aΔoxyRS. The complemented mutant and (plasmid) control exhibit indistinguishable growth kinetics.
This indicates that OxyR, a global oxygen stress response regulator, facilitates urovirulence in *E. coli* strain Ec1a and, hence, could be considered a virulence-facilitating factor, if not a virulence factor per se.

OxyR’s contribution to urovirulence likely derives from its protective role against oxidative stress and injury. The acute host inflammatory response to UTI includes a vigorous influx of PMNs, which, upon encountering the pathogen, generate and release reactive oxygen products and their toxic derivatives (11, 28). The OxyR system presumably enables *E. coli* to better withstand this noxious onslaught. However, even during ex vivo growth in urine from a healthy volunteer, the *oxyRS* mutant exhibited marked growth derangements in comparison with the parent and the complemented mutant; these were much greater than the subtle defects observed during in vitro growth in nutrient broth. This suggests that non-PMN-derived oxidative factors may be present even in uninfected urine. Alternatively, growth in urine may require metabolic pathways that generate substantial endogenous oxidants especially toxic to *oxyR*-deficient *E. coli*.

FIG. 3. Comparative mouse urinary tract colonization ability of *Escherichia coli* strains Ec1a and Ec1aΔoxyRS and transformants of each. A competition model was used in which both test strains (for a given experiment) were administered simultaneously to female CBA/J mice perurethrally as a mixture. Outcomes (from 48-h postchallenge cultures of urine, bladder, and kidneys) are displayed as the log_{10} of the CI, which is the relative prevalence of the two test strains in the postmortem cultures (output ratio), corrected for the strains’ relative prevalences in the challenge suspension (input ratio). Positive values for the log_{10} CI indicate a competitive advantage for Ec1a over Ec1aΔoxyR (top) or for the complemented mutant (Ec1aΔoxyRS/pACYC184oxyR) over the plasmid control (Ec1a/pACYC184) (bottom). Negative values for the log_{10} CI indicate the reverse. Horizontal lines indicate the median (med) values among positive cultures. For each experiment, 10 mice were studied each week for 2 weeks (20 mice total per experiment). Postmortem urine samples were not available from all mice. P values are by the Wilcoxon rank sum test, n.s., not significant.
To directly assess the relative contribution of the oxidative killing system of PMNs, as opposed to other oxidative stresses present within the urinary tract, to the virulence deficit observed with the oxyRS mutant, we utilized p47phox−/− CGD phenotype mice, which are deficient in phagocyte oxidative killing. (The C57BL strain, although less susceptible than the more commonly employed CBA strain, was used as a comparison for the otherwise isogenic phagocyte oxidative-deficient mouse line.) OxyR mutants of E. coli were attenuated for virulence in C57BL mice much as they were in CBA/J mice, suggesting that oxidative stresses imposed on bacteria in the urinary tract are important for suppressing the pathogenesis of infection in at least these two strains of mice. However, our prior hypothesis that the source of oxidative suppression of bacterial virulence is primarily the phagocyte oxidase was not supported by these experiments using phagocyte oxidative-deficient mice. That is, the virulence of oxyR E. coli was not increased by eliminating host phagocyte oxidase activity. Surprisingly, the virulence of wild-type E. coli was also not increased by eliminating host phagocyte oxidase activity. Thus, although in the mouse UTI model, neutrophils are important in host defense against ascending pyelonephritis (10–12), the neutrophil phagocyte oxidase appears not to be critical. Neutrophils maintain a substantial antimicrobial armamentarium that is phagocyte oxidase independent and these are presumably the principal factors that suppress ascending pyelonephritis in this setting.

What, then, are possible sources of nonneutrophil oxidative stress that attenuate the virulence of oxyR E. coli and are responsible for the profound growth defect observed in human urine? Hpx− E. coli, a recently coined term (34), is deficient in three enzymes that detoxify hydrogen peroxide: hydroperoxidase I (katG gene), hydroperoxidase II (katE), and alkyl hydroperoxidase (ahpC/ahpF). Such strains accumulate endogenous hydrogen peroxide in their cytosol as a consequence of aerobic metabolism and are unable to defend themselves against exogenous hydrogen peroxide. One consequence of the hpx-deficient genotype is a growth defect and increased susceptibility to oxidative DNA damage (34). Expression of both hydroperoxidase I and alkyl hydroperoxidase is regulated in part by OxyR. Thus, it is possible that oxyR E. coli acquires a partial Hpx− phenotype even though the genes for all three enzymes are present. Conceivably, growth conditions within the urinary tract, and in urine per se, serve as a metabolic stress that impairs the growth and survival of the oxyRS strain. Additional stresses may be engendered by the oxygen-independent antimicrobial armamentarium of urinary phagocytes. Why, however, the reactive oxygen species generated by the phagocyte oxidase do not further impair the virulence of oxyR E. coli remains an unanswered question.

Our experimental findings satisfy, for oxyR, the second and third of the molecular versions of Koch's postulates, as articulated by Falkow to describe the evidence needed to establish a particular microbial trait as a virulence factor (8). The second postulate holds that inactivation of the trait must diminish virulence, whereas the third requires that restoration of the trait must restore virulence. In contrast, the first postulate, i.e., that the trait must be epidemiologically associated with disease, cannot be fulfilled for oxyR or, for that matter, any property that is ubiquitous (or nearly so) within the species, even if it demonstrably contributes to virulence and is not required for vegetative growth. For E. coli, such traits include type 1 fimbriae, gaaA, and argC (7, 26, 41).

Which specific components of the oxyR regulon contributed to the observed enhanced virulence remains to be determined. One or more of these components may be both functionally important and amenable to vaccine or pharmaceutical interference and thus may constitute a useful therapeutic target. Because of the nearly ubiquitous nature of OxyR, before any such interventions are implemented clinically, it would be important to confirm that they do not exert health-harmful effects on the host's commensal flora.

The supercolonization phenotype exhibited by the oxyR-complemented mutant was most likely due to increased gene dose, since the carrier plasmid, pACYC184, is present in approximately 18 copies per cell (6). This finding provides further suggestive evidence of the importance within the urinary tract of oxygen-mediated host defenses (28) and, correspondingly, the value to uropathogens of oxidative stress protection systems. That supercolonization was observed in kidneys but not bladders may suggest that oxygen-related host defenses are more pronounced in the kidney.

It appears that the transfer of oxyR E. coli to fresh medium or urine under a variety of circumstances (LB or MH broth, aerobic or anaerobic) results in the stasis or even death of many organisms soon after transfer. However, after a lag phase of 2 to 4 h (medium) or >8 h (urine), the organisms and their progeny appear to grow as rapidly as the parental strain. The growth defect can be attributed with confidence to the oxyR mutation, since it disappears when complemented with a normal oxyR gene in trans (multiple copy number). We suggest that the transfer to new medium generates an endogenous oxidative stress (14) that is addressed promptly, by oxyR-dependent mechanisms, in the parental strain and more slowly, by oxyR-independent mechanisms, in the mutant. We also suggest that the failure of the mutant to catch up with the parent in vivo as it does in vitro is attributable in part to the greater and ongoing oxidative stress within the (infected) host urinary tract.

The in vitro growth effects associated with oxyRS inactivation beg the question of whether OxyR can be considered a true virulence factor in the classical sense. Presumably, inactivation of any bacterial trait that is required for in vitro growth would both impair in vivo fitness and be complementable, thereby allowing fulfillment of the second and third of Koch's molecular postulates. Clearly, this is insufficient to consider a trait a virulence factor. However, with OxyR, we observed a gradient of growth effects, from minimal (in vitro, with broth or agar plates), to intermediate (ex vivo, in urine), to profound (in vivo, in mice). We do not consider the in vivo findings to be fully explained by the in vitro effect. Thus, growth effects associated with gene knockouts may need to be considered quantitatively, against a relevant commensal comparator, rather than categorically.

In this regard, the impact of oxyR inactivation on fitness within the primary commensal niche for E. coli, the colonic lumen, is undefined. In view of the known anaerobic nature of this environment, with its predominantly (obligate) anaerobic microflora, there may be little or no need for OxyR-mediated defenses in the gut. If not, and since extraintestinal E. coli infections usually are not advantageous to the pathogen, it is
conceivable that the selective advantage accounting evolutionarily for the retention of OxyR within E. coli is enhanced survival outside the host, within the (aerobic) external environment. This would facilitate dissemination to new hosts, e.g., via the food supply, thereby promoting clonal persistence and expansion, independent of any direct effect on host colonization.

In summary, we found that the global oxygen stress response regulator OxyR functions as a urovirulence-facilitating factor in E. coli, promoting acute bladder and kidney colonization by strain Ec1a (O1:K1:H7) in an experimental model of UTI in both CBA/J and C57BL mice. This indicates that oxidative stress is an important aspect of host defense against UTI and that the ability to resist this stress is required for full urovirulence even by an E. coli strain equipped with multiple other urovirulence factors. However, since the inactivation of phagocyte oxidase did not significantly increase host susceptibility to experimental UTI or blunt the virulence attenuation of the oxyR mutant, PMNs probably are not a critical source of oxidative stresses for E. coli within the urinary tract but instead protect against pyelonephritis mainly through nonoxidative mechanisms. Since oxyR is present in nearly all E. coli strains, these findings suggest the possibility of broadly active therapeutics directed toward OxyR and/or components of its regulon, provided that such interventions do not exert health-harming effects on the commensal flora.

ACKNOWLEDGMENTS

This material is based upon work supported by the Office of Research and Development, Medical Research Service, Department of Veterans Affairs (J.R.), and the National Institutes of Health grants DK-47504 (J.R.) and AI-69417 (H.R.). Adam Stell and Patrick Lewis provided technical assistance in the laboratory. Dave Prentiss prepared the figures.

REFERENCES

Editor: F. C. Fang