Use of Protein Microarrays To Define the Humoral Immune Response in Leprosy Patients and Identification of Disease-State-Specific Antigenic Profiles

Nathan A. Groathouse,1 Amol Amin,1 Maria Angela M. Marques,1 John S. Spencer,1 Robert Gelber,3 Dennis L. Knudson,2 John T. Belisle,1 Patrick J. Brennan,1 and Richard A. Slayden1∗

Department of Microbiology, Immunology, and Pathology1 and Department of Bioagricultural Science and Pest Management,2 Colorado State University, Fort Collins, Colorado 80523-1682, and Leonard Wood Memorial Leprosy Research Center, Cebu, Philippines3

Received 9 January 2006/Returned for modification 28 February 2006/Accepted 3 September 2006

Although the global prevalence of leprosy has decreased over the last few decades due to an effective multidrug regimen, large numbers of new cases are still being reported, raising questions as to the ability to identify patients likely to spread disease and the effects of chemotherapy on the overall incidence of leprosy. This can partially be attributed to the lack of diagnostic markers for different clinical states of the disease and the consequent implementation of differential, optimal drug therapeutic strategies. Accordingly, comparative bioinformatics and Mycobacterium leprae protein microarrays were applied to investigate whether leprosy patients with different clinical forms of the disease can be categorized based on differential humoral immune response patterns. Evaluation of sera from 20 clinically diagnosed leprosy patients using native protein and recombinant protein microarrays revealed unique disease-specific, humoral reactivity patterns. Statistical analysis of the serological patterns yielded distinct groups that correlated with phenolic glycolipid I reactivity and clinical diagnosis, thus demonstrating that leprosy patients, including those diagnosed with the paucibacillary, tuberculoid form of disease, can be classified based on humoral reactivity to a subset of M. leprae protein antigens produced in recombinant form.

Global leprosy disease prevalence has been drastically reduced, due largely to a World Health Organization-sponsored multidrug therapy elimination campaign (42). Incidence, as estimated by new case detection, however, remains high. Moreover, disease management and prevention in this new era of lowered prevalence have been hindered by the absence of tools that allow the objective diagnosis of disease and disease states, therefore providing a guide to preventative therapy and overall disease management. The identification of specific informative diagnostic antigens is one of the most difficult aspects in developing new diagnostic tools, and this is particularly true with leprosy, because there is a paucity of information involving the roles of many of the expressed proteins or the metabolic state of the organism throughout infection and disease progression.

The availability of the complete genome sequence and annotated coding capacity of Mycobacterium leprae provides a wealth of information that can be exploited for diagnostic purposes (4, 18). Of course, prospective antigens that may be relevant to disease diagnosis must then be validated experimentally. The major protein antigens of M. leprae were identified through subcellular fractionation of armadillo-derived M. leprae whole cells (16, 17, 21, 22, 27, 33, 34, 37). Recombinant forms of some of the more significant native proteins were subsequently created and tested (22, 27, 37). Recently, several groups have also used a postgenomic approach to discover new antigens for leprosy diagnosis (1, 2, 28, 36, 37). These studies all exploited genomic sequence for the identification of M. leprae-specific proteins or peptides that may be suitable for serodiagnosis of different disease states of leprosy. While many of these studies described novel antigens that show marked humoral and cellular immunogenicity, none employed protein-based microarrays.

The presence of antibodies follows an initial infection and precedes disease manifestations, allowing targeted chemophylaxis during the typical long incubation period (~5 years) of leprosy. Similar to the diagnosis of tuberculosis, where early detection of exposure and prompt chemophylaxis prevent the progression of disease, household contacts of multibacillary (MB) leprosy patients and exposed individuals would also benefit from early detection (10). Indeed, studies have shown that contacts of MB leprosy patients have an increased risk of developing leprosy themselves (41). It has also been found that contacts who have an antibody response to the M. leprae-specific phenolic glycolipid (phenolic glycolipid I [PGL-I]) have a much greater chance to develop clinical leprosy than those without an antibody response (3, 7, 19, 23). Yet almost half of those who have antibodies to PGL-I never develop leprosy, and half of those who develop leprosy never have PGL-I antibody. Thus, additional alternative markers have the promise of producing a predictive serodiagnostic tool.

Protein-based microarrays provide a consistent platform for studying humoral immune responses of a diverse group of patients to a wide variety of antigens for various infectious diseases in a high-throughput fashion (6, 9). In the present work, the
humoral immune response patterns of sera from patients clinically diagnosed with tuberculous or lepromatous forms of leprosy (30) were evaluated with protein microarrays to define protein profiles reflective of specific disease states. The arrays were constructed either with proteins isolated from the cell wall and membrane of M. leprae or with a subset of recombinant proteins that are unique to M. leprae or have significant selectivity to M. leprae, according to stringent bioinformatics analysis. The results indicate that screening disease-state sera against protein-based microarrays can discern reactive antigens and patterns that are specific to disease classification. This work provides a foundation for the identification of novel diagnostic antigens relevant to the various clinical forms of leprosy, particularly tuberculoid.

MATERIALS AND METHODS

M. leprae patient serum samples. Ten each of paucibacillary (PB) and MB leprosy patients were diagnosed by clinical and histopathological criteria at the Leonard Wood Memorial Center for Leprosy Research, Colorado Springs, Colorado. Leprosy was classified based on the Ridley-Jopling scheme by bacterial, histological, and clinical observation (30) carried out by experienced leprologists and a leprosy pathologist; no nerve biopsies were performed on the patients in this study. All sera were collected at the time of initial diagnosis before any antimicrobial therapy. Individuals clinically diagnosed with the lepromatous (LL) or borderline lepromatous (BL) forms of leprosy (samples L1 to L26) had an enzyme-linked immunosorbent assay (ELISA) value (optical density at 490 nm [OD490]) against M. leprae of 2.35 ± 0.28 and a mean bacterial index (BI) of 4.03 ± 0.62. Individuals clinically diagnosed with the tuberculoid (TT) or borderline tuberculoid (BT) forms of leprosy (samples T51 to T60) had an ELISA PGL-I value (OD490) of 0.80 ± 0.36 and a mean BI of 0.48 ± 0.50. Details of the treatment of patients and clinical outcomes are presented in Table S1 in the supplemental material. Naive individuals from a site to which leprosy is not endemic (Colorado) provided control sera with an ELISA PGL-I value (OD490) of 0.29 ± 0.03.

Isolation and purification of M. leprae subcellular fractions. Approximately 200 mg of M. leprae whole cells were purified from armadillo spleens and livers according to the Draper 3/77 protocol (33). Subcellular fractionation of M. leprae whole cells was achieved by sonication (MSE Soniprep 150, MSE-Sonyo, Integrated Services, Palisades Park, NJ) for 30 cycles (60 s bursts followed by 60 s of cooling) in buffer consisting of 10 mM NaHCO3, 1 mM phenylmethylsulfonyl fluoride. The whole-cell sonicate was digested with 10 mg/ml of DNase and RNase at 37°C (11). The pellet resulting from centrifugation at 27,000 g for 30 min provided the cell wall fraction, and the supernatant from this step was recentrifuged at 100,000 × g for 2 h, yielding a second pellet of cytoplasmic membrane.

Final separation of cell wall and cytoplasmic membrane-associated proteins was achieved by electrophoresis on a preparative 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel (performed under reducing conditions) (20). On completion of electrophoresis, the gel was soaked in 20 mM NH4HCO3 for 30 min, followed by electrophoretic elution of the proteins using a Bio-Rad whole-gel elutor (Bio-Rad, Hercules, CA) at 250 mA for 2 h. The resulting protein fractions were frozen and lyophilized, resuspended in a 400-μl volume of sterile endotoxin-free water, and analyzed for content and purity by SDS-PAGE and silver staining (24). A periodic acid step was also incorporated to gauge the presence of or ensure the absence of lipooarabinomannan (40).

ELISA and Western blotting. High-affinity polystyrene microtiter plates (Immulon 4 HBX plates; Dynax, Alexandria, VA) were coated with protein antigens overnight at 4°C in PBS containing 1% bovine serum albumin (Intergen Co., Purchase, NY) and 0.05% Tween 20 (Sigma Chemical Co., St. Louis, MO) for 1 h at room temperature. Polyclonal mouse sera and monoclonal antibodies were incubated at optimal dilutions in blocking buffer, as previously described (37). Unbound antibody was removed with PBS containing 0.05% Tween 20 without bovine serum albumin, and the secondary antibody conjugated to alkaline phosphatase (Sigma) was added and incubated for 2 h. Alkaline phosphatase activity was detected by the addition of a p-nitrophenylphosphate substrate. Western blots were prepared by transferring antigens run on SDS-PAGE (10% or 15% polyacrylamide gels) to a nitrocellulose membrane (39) and incubated with an antigen-specific primary antibody (37). Antibodies against M. leprae antigens were generated as described elsewhere (12, 16, 17, 22, 27, 34, 37); these are available from the Leprosy Research Support and Maintenance of an Armadillo Colony Post-Genome Era, Part I: Leprosy Research Support Contract (N01 AI-25469) at Colorado State University (5).

Comparative genomic and bioinformatics analysis. A global in silico identification of targets (CROSS_MATCH (GISIT-cm)-approach was used to identify proteins that might be potential targets for further study. The GISIT-cmn approach identifies unique proteins by comparing the M. leprae genome (GenBank entry NC_000962.fna) against other bacterial genomes. This was performed with the Mycobacterium tuberculosis genome (GenBank entry NC_000962.fna) by dividing it into 491 10-kb fragments, where each fragment contained a 1 kb-overlap with the previous fragment, using SPLITTER (EMBOSS package) (29). The data set of M. tuberculosis overlapping sequences was then used as the source for the masking sequence against the M. leprae genome using CROSS_MATCH (version 0.990329), which used a restricted Smith-Waterman (35) algorithm (13). CROSS_MATCH was run with a security value of 12 and a masking value of 20, resulting in a masked M. leprae genome file where the sequences similar to those of M. tuberculosis were identified. ARTEMIS was then used to identify the open reading frames (ORFs) that were masked and to produce a masked data set of M. leprae ORFs. The M. leprae data set was opened in ARTEMIS (31), ORFs were selected, and a separate feature table of the 1,605 selected ORFs was prepared; this selection did not contain pseudogenes. Shell script and PERL scripts that read the FASTA (26) formatted file of masked proteins were written, producing a new file of protein groups for each protein group. The output MSF was subjected to a specific percentage of cross-identity in the amino acid sequence. A value of 50% was used as the cutoff in this study. Uniqueness of identified ORFs to M. leprae was confirmed by BLASTN and BLASTP analysis against GenBank entries. The complete list of proteins identified using the GISIT-cm approach is in Table S2 in the supplemental material.

Production of recombinant proteins. Relevant genes were PCR amplified from M. leprae genomic DNA and cloned into pENTURY PFU DNA polymerase (Sigma). Primers for each gene were engineered to introduce NdeI and HindIII restriction enzyme sites into the 5’ and 3’ ends of the ampiclon to facilitate direct cloning into the expression vector pET28(+) (EMD Biosciences, Inc., San Diego, CA). Each recombinant clone was verified by DNA sequencing. Recombinant protein production was achieved by introduction of the expression plasmid into Escherichia coli strain BL21 (DE3) (Invitrogen Corp., Carlsbad, CA) by transformation (21). Induction using the T7 polymerase with 0.3 mM isopropyl-β-D-thiogalactopyranoside. Recombinant proteins were released from E. coli by sonic disruption in buffer (Tris-HCl, pH 8.0, 2 μg/ml aprotinin, 1 μg/ml leupeptin, 1 μg/ml pepstatin, and 1 mM phenylmethylsulfonyl fluoride). The bacterial lysate was cleared by centrifugation, and the resulting supernatant was applied to an immobilized nickel-affinity column. Purified recombinant proteins were recovered from the affinity column with 50 mM imidazole and passed over a Detoxi-gel column (Pierce Biotechnology, Inc., Rockford, IL) to remove any contaminating proteins. Purity of recombinant proteins was assessed by SDS-PAGE and stained with Coomassie blue followed by silver staining. The final protein concentration was determined using the bicinchoninic assay (Pierce Biotechnology, Inc., Rockford, IL, and lipopolysaccharide contamination was evaluated by the Limulus amoebocyte lysate assay (Cambrex Corp., Elmsford, N.Y.).

Fabrication and immunoblotting of protein microarrays. M. leprae protein arrays were fabricated on glass slides with a 14 μm nitrocellulose film (FAST glass slides; Schleicher & Schuell BioScience, Inc., Keene, N.H.) using a VersaArray Chipwriter Pro (Bio-Rad). Proteins fractions and buffer controls were printed in triplicate at approximately 0.2-mg/ml concentrations. Protein arrays were blocked for 1 h in protein array-blocking buffer (Schleicher & Schuell BioScience, Inc., Keene, NH) and incubated with serum (diluted 1:50) from patients or controls (primary antibody) at room temperature for 2 h. Visualization of primary antibody (Ab) (Sigma-Aldrich, St. Louis, MO) was achieved by incubation with Cy5- or Cy3-conjugated antihuman secondary Ab and scanning with a VersaArray ChipReader Pro (Bio-Rad). Fluorescence intensities were quantified using Spotfinder software (32, 38).

Array data analysis. Fluorescence intensities derived from each of the independent triplicate arrays were averaged to represent the response of each patient’s serum sample. The resulting averaged intensities were then globally normalized for direct comparisons. Fluorescence intensities for each protein spot resulting from blotting with control serum were used to calculate the level of fluorescence intensity relative to background reactivity for each protein spot. The reactive index for each protein spot was calculated as the number of standard deviations relative to the average fluorescence intensity of all the spots. This statistical approach allowed for identification of protein antigens that were found to have significantly greater than average background reactivity. Hierarchical clustering and self-organizing map (SOM) analysis was performed on the entire data...
set (43); SOM is an unsupervised neural network model that effectively categorizes and clusters based on similarities in the antibody reactivity among groups.

RESULTS

Analysis of the humoral immune response using native-based protein arrays. Native protein arrays were printed with protein fractions derived from the *M. leprae* membrane and cell wall. These fractions were visualized by SDS-PAGE to evaluate overall sample fractionation and protein distribution (Fig. 1). Although the molecular weight range of proteins in each fraction was relatively narrow, previous quantitative analysis of two-dimensional gel patterns revealed that each protein fraction used for array fabrication contained multiple proteins (21). To evaluate the potential distribution of a single protein among different protein fractions, Western blot analysis was performed (data not shown), demonstrating that known protein antigens were electrophoretically eluted into peak fractions with some overlap to adjacent fractions.

Native protein arrays were probed with serum obtained from patients clinically diagnosed with lepromatous or tuberculoid forms of leprosy (30). Immunologically naive individuals lack reactivity against any of the proteins on the array, but sera from individuals diagnosed with leprosy had different reactivity patterns. The reactive index for each protein antigen fraction

![SDS-PAGE gel migration analysis of the *M. leprae* native protein fractions used in the fabrication of the protein microarray. (A) Cell wall protein fractions and (B) membrane proteins fractions separated by electrophoretic elution and visualized by silver staining.](http://iai.asm.org/)
on the arrays was calculated and subjected to analysis to determine whether there were unique disease-specific patterns that correlate to disease diagnosis (Fig. 2C) (see Table S3 in the supplemental material). SOM analysis of the reactive index for each protein fraction assigned patients into three groups based on the reactive patterns of their sera (Fig. 2A). SOM group I was predominately composed of patients that had been clinically diagnosed with the lepromatous form of leprosy (SOM 0; \(n = 4/5 \)). SOM group III was entirely composed of patients clinically diagnosed with the tuberculoid form of leprosy (SOM 2; \(n = 6/6 \)). The largest and most clinically diverse group was SOM group II, which had three patients clinically diagnosed with the tuberculoid form of leprosy (SOM 1; \(n = 3/9 \)) and six patients clinically diagnosed with the lepromatous form of leprosy (SOM 1; \(n = 6/9 \)). While there were some protein fractions recognized in common by all patient sera, many of the protein fractions were uniquely recognized by sera from patients assigned to a single SOM group (Fig. 3A to C; Table 1). Specific reactivity patterns which correlate with different clinical states of disease were seen using protein microarrays and statistical analysis.

Hierarchical clustering analysis was also performed on the data set. This statistical approach organized patients into two rather than three major groups (Fig. 2B). The main difference was that patients assigned to SOM groups I and II were combined, and several smaller subdivisions, namely HC groups Ia to Ic, emerged. Overall, this analysis organized the majority of the lepromatous patients together (HC groups Ib and Ic; \(n = 9/10 \)) with a small group (HC group Ia) as statistical outliers with one lepromatous and one tuberculoid patient. Importantly, the second major group, revealed by hierarchical clustering analysis (HC group II), contained the same patients as SOM group III, which was wholly comprised of patients that were clinically diagnosed with the TT form of leprosy.

Further examination of the analysis clearly revealed a group of patients assigned to SOM group II or HC group Ib by SOM or hierarchical clustering analysis, respectively, whose sera had similar reactivity patterns despite clinical diagnosis and that were different from other lepromatous and tuberculoid patients, favoring classification in a more intermediary position within the Ridley-Jopling clinical spectrum (30). These observations support the case for a borderline form of disease (BT, BB, or BL). Statistical analyses supported the case for the existence of unique patterns of serological reactivity to \(M. \) leprae protein fractions for different clinical states of disease, thus substantiating this approach of using \(M. \) leprae protein microarrays for the identification of disease state-specific reactive patterns, particularly for the tuberculoid form of disease.

The complexity of the native protein fractions hindered precise identification of all of the potentially reactive proteins within each fraction by mass spectrometry, N-terminal sequencing, or Western blotting. Since certain dominant protein antigens were known...
to be present in the spotted native protein fractions as determined by application of antigen-specific monoclonal antibodies, patient sera reactive to these spots implicated reaction to these precise proteins (see Table S4 in the supplemental material). Furthermore, sera reactive to multiple fractions containing a common protein strongly implicated a particular antigen as the immunodominant protein in those fractions. However, this is not a definitive identification system. Accordingly, recombinant protein-
GISIT-cm was performed to identify proteins of antigenic proteins.

VOL. 74, 2006 IDENTIFICATION OF LEPROSY DISEASE-STATE ANTIGENS 6463

M. leprae sequence while 160 were considered 100% unique (see Table S2 in M. leprae).

1,605 may represent borderline forms of disease. Group I antigen I was recognized by lepromatous patients, and those recognized by a sub-
group of patients thought to have an intermediate form of disease. Grp II Ag-2 (ML1829), Grp II Ag-3 (ML0126), and Grp II Ag-4 (ML0396) were identified as being differentially recognized by sera of patients thought to have an intermediate form of disease (10, 14, 25). Accordingly, sera from all the patients had lower ELISA PGL-I values (OD490) for PGL-I. This antigen has been shown to be a marker for bac-

Correlation of protein array classification and reactivity to PGL-I. A current serodiagnostic test that is able to identify patients with M. leprae infection is based on M. leprae-specific PGL-I. This antigen has been shown to be a marker for bac-
terial load, with antibody levels correlating with the spectrum of disease (10, 14, 25). Accordingly, sera from all the patients used in this study were evaluated by ELISA for PGL-I sero-
reactivity (Table 3). Overall, patients diagnosed with the PB form of disease had lower ELISA PGL-I values (ODs(w)) (0.80 ± 0.36) and patients diagnosed with the MB form of disease had greater PGL-I values (2.35 ± 0.28), which is partially concordant with immunoreactivity patterning (Fig. 4). As discussed previously, patients were categorized into three

<table>
<thead>
<tr>
<th>Protein fraction</th>
<th>Mean RI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SOM I</td>
</tr>
<tr>
<td>CW10</td>
<td>1.60 ± 0.43</td>
</tr>
<tr>
<td>CW2</td>
<td>1.31 ± 0.067</td>
</tr>
<tr>
<td>CW20</td>
<td>0.40 ± 0.07</td>
</tr>
<tr>
<td>CW30</td>
<td>1.70 ± 1.06</td>
</tr>
<tr>
<td>CW8</td>
<td>1.19 ± 0.38</td>
</tr>
<tr>
<td>MEM1</td>
<td>0.92 ± 0.27</td>
</tr>
<tr>
<td>MEM10</td>
<td>1.01 ± 0.37</td>
</tr>
<tr>
<td>MEM15</td>
<td>1.42 ± 0.12</td>
</tr>
<tr>
<td>MEM16</td>
<td>1.22 ± 0.11</td>
</tr>
<tr>
<td>MEM17</td>
<td>1.36 ± 0.28</td>
</tr>
<tr>
<td>MEM2</td>
<td>0.59 ± 0.12</td>
</tr>
<tr>
<td>MEM22</td>
<td>1.89 ± 0.36</td>
</tr>
<tr>
<td>MEM25</td>
<td>1.31 ± 0.28</td>
</tr>
<tr>
<td>MEM27</td>
<td>1.33 ± 0.78</td>
</tr>
<tr>
<td>MEM28</td>
<td>1.19 ± 0.95</td>
</tr>
<tr>
<td>MEM3</td>
<td>1.24 ± 0.18</td>
</tr>
<tr>
<td>MEM30</td>
<td>1.27 ± 1.01</td>
</tr>
<tr>
<td>MEM4</td>
<td>1.84 ± 0.32</td>
</tr>
<tr>
<td>MEM5</td>
<td>1.24 ± 0.32</td>
</tr>
<tr>
<td>MEM7</td>
<td>1.36 ± 0.20</td>
</tr>
<tr>
<td>MEM8</td>
<td>1.13 ± 0.46</td>
</tr>
</tbody>
</table>

* Mean reactive index (RI) is defined as the number of standard deviations of a normalized fluorescence intensity above the background level.

** SOM group (SOM I to III) assignments are from statistical analysis of immunoreactivity on native protein microarrays probed with sera from patients clinically diagnosed with the TT or LL form of disease.

** Dominant protein fractions for each SOM group. The top 10 immunoreactive protein fractions are denoted by boldfaced values for each SOM group (SOM I to III).

Based on patient serum reactivity and SOM analysis from Fig. 2. Significant RIs are shown in boldface. Underlined values are RI values for multiple SOM groups.
One of the most challenging tasks in developing disease state-specific serodiagnostics is the identification of discriminating antigens that differentiate between exposure and clinical stage of disease with high sensitivity and specificity. Screening sera from a large number of patients diagnosed with various states of disease against the entire leprosy proteome offers the potential for facile identification of such selective antigens. However, the resources to accomplish such an extensive enterprise with leprosy are not available. Therefore, to utilize microarray technology for the identification of novel diagnostic antigens, native proteins were obtained by subcellular fractionation of M. leprae and selected proteins were identified for recombinant antigen production based on bioinformatic analyses. Specifically, for selection of recombinant proteins, comparative analysis of the leprosy genome against those of closely related organisms was performed to identify gene products that are unique to M. leprae, with a consequent identification of novel diagnostic antigens.

DISCUSSION
high degree of serological specificity. Such an approach has been successfully used to identify highly specific antigens for tuberculosis diagnostics (8).

Currently the serodiagnosis of leprosy has been largely confined to the presence of immunoglobulin M antibodies to the \(M. leprae\)-specific PGL-I. Though antibodies to PGL-I are present in more than 90% of untreated MB lepromatous patients, only a limited number of patients at the PB/tuberculoid end of the disease spectrum are reactive (23, 25). Thus, the PB state, with low levels of circulating specific antibodies, absence of acid-fast bacilli, and clinical similarities to numerous other granulomatous processes, is difficult to diagnose (19). Adding to the complication of leprosy diagnosis is the requirement for highly trained clinicians that can differentiate clinical states of disease and categorize patients within the disease spectrum. In the absence of such experienced clinicians, diagnoses of each clinical form of leprosy is subjective (14). Depending on the categorization, the chemotherapeutic regimen varies: 6 months of multidrug therapy for tuberculoid patients compared to 12 months or more for lepromatous patients. Therefore, to enhance leprosy diagnosis and treatment, particularly for tuberculoid patients, an accurate diagnostic tool that provides a clear definition and a benchmark for disease progression is desirable.

In an attempt to improve diagnostics, multiple tests have been developed for leprosy; however, they lack either specificity or sensitivity for the detection of asymptomatic infections and disease progression. Recently studies employing bioinformatics and experimental approaches to evaluate individual \(M. leprae\) proteins or small sets of proteins as potential serodiagnostic or T-cell antigens have been performed (1, 2, 14, 28, 36). Reed and colleagues (28) identified 14 recombinant \(M. leprae\) proteins that strongly react to sera of LL patients, and two of these antigens (MI0405 and MI2331) demonstrated the ability to detect BL patients and, in combination, enhanced serological detection with PGL-I. Geluk et al. (14) also evaluated a relatively large number of recombinant \(M. leprae\) proteins for reactivity to T cells. This work demonstrated five antigens (MI0576, MI1989, MI1990, MI2283, and MI2567) that induced significant IFN-\(\gamma\) levels in PB leprosy patients, reactional leprosy patients, and contacts but not in most MB patients or controls. Recently, recombinant proteins (MI0008, MI0126, MI1057, and MI2567) and 58 peptides were tested by us for IFN-\(\gamma\) responses in peripheral blood mononuclear cells from leprosy patients seeking epitopes that would increase specificity (36). The responses to the four recombinant proteins gave higher levels of IFN-\(\gamma\) production but less specificity than the peptides, with 35 of the peptides giving high responses only in the case of PB and household contacts. Another study evaluated the immunogenicity of 12 recombinant proteins by measuring the reactivity of circulating antibody and IFN-\(\gamma\) responses. Both humoral and cellular immunogenicity was observed for two antigens (MI0308 and MI2498) for PB and MB patients (2). It is interesting to note that there is limited overlap between the \(M. leprae\) proteins studied in previous work (36) and the 18 recombinant proteins evaluated in this study. However, the methods for selecting and screening of potential antigens in these studies were dramatically different. Overall, none of these studies identified unique antigens capable of distinguishing patients with PB versus MB forms of disease.

In our current studies, evaluation of serological reactivities for 20 patients clinically defined with either the PB or MB form of disease led to the identification of 10 proteins, allowing classification of patients into 3 categories. Sera from six PB patients uniquely recognized MI0008 and MI0957, and sera from six MB patients uniquely recognized, MI1419 and MI1057. Sera from the remaining PB and MB patients reacted with MI1877, MI1829, MI0126, and MI0596, giving rise to a third category. All patient sera had reactivity to MI1915 and MI0050, providing broad controls, similar to previous studies discussed. Identification of these 10 antigens based on serological activity established that a limited number of antigens can be used to categorize patients into groups consistent with clinical diagnosis based solely on nonsubjective criteria.

An interesting finding in this study is the statistical identification of a set of patients clinically diagnosed with either the PB or MB form of disease with similar humoral reactivity profiles (som group II). One possibility that may account for this is that these patients, with different clinical diagnoses, intermediate PGL-I reactivity, and different bacterial burdens, may be progressing along the clinical spectrum of disease. In such a case, the ability of these 10 antigens to distinguish true PB patients from those progressing towards the MB form of disease would have significant utility in leprosy control programs and in limiting the transmission of \(M. leprae\). It has been reported that PB patients with weak PGL-I antibody responses are not associated with the spread of disease, whereas PB leprosy patients with elevated antibody responses transmit bacilli. Therefore, PB patients in this study that were categorized into SOM group II based on seroreactivity and that have elevated PGL-I reactivity might be progressing to the MB state. Fully realizing the potential of the antigens described in this study will require a larger cohort of patients and follow-up studies on disease progression.

A second aspect of this work was the use of complex subcellular protein fractions from an obligate intracellular pathogen to fabricate microarrays seeking to define unique serological reactivity profiles. While precise antigen identifications were not made, the use of native protein microarrays proved useful for discerning unique patterns in leprosy patients. Since the native protein fractions were limiting, extensive antigen identification could not be performed. Nevertheless, it was interesting to note that regardless of whether native protein fractions or recombinant proteins were used, patients sera grouped equally well based on disease state. The data obtained with the native fractions also indicate that there are potentially more diagnostic antigens to be discovered. Protein array technology may not yet be applicable as a field diagnostic in regions of endemicity. It is, however, a powerful tool for antigen discovery and could be applied to other clinically relevant research questions, including the identification of serodiagnostic antigens that can be used to monitor the success or failure of therapy.

ACKNOWLEDGMENTS

This work was supported by NO1-AI25469 (P.J.B.), RO1-AL47197 (P.J.B.), RO1-AI05298 (R.A.S.), and NO1-AI75320 (J.T.B.).

We gratefully acknowledge the enthusiastic support of the clinical staff at Leonard Wood Memorial Leprosy Research Center in Cebu, Philippines.

N.A.G. performed the screening on patient sera, prepared figures for publication, and wrote the manuscript with R.A.S. A.A. printed the protein arrays and standardized the hybridization protocols with R.A.S. M.A.M.M. performed the protein fractionation. J.S.S. per-
formed the ELISA and provided protein fractions. R.G. provided clinical support. D.L.K. provided bioinformatic support. D.L.K., J.T.B., P.J.B., and R.A.S. contributed to the design of the study, data interpretation, and manuscript preparation.

REFERENCES

Editor: J. L. Flynn