Lipoteichoic Acid Is Important in Innate Immune Responses to Gram-Positive Bacteria

Ho Seong Seo, 1,2 Suzanne M. Michalek, 2 and Moon H. Nahm 1,2*

Departments of Pathology 1 and Microbiology, 2 University of Alabama at Birmingham, Birmingham, Alabama

Received 17 August 2007/Returned for modification 21 September 2007/Accepted 12 October 2007

To define the role of lipoteichoic acid (LTA) in innate immunity to gram-positive bacteria, we investigated the production of tumor necrosis factor alpha (TNF-α) by macrophages stimulated with gram-positive bacterial culture supernatants (GPCSs) after their LTA was removed or inactivated. GPCSs were obtained from three gram-positive species (pneumococci, staphylococci, and group B streptococci) during the exponential growth phase (designated early GPCSs) or at the senescent stage (designated late GPCSs). LTA was removed using an anti-LTA antibody or was inactivated by alkaline hydrolysis or platelet-activating factor acetylhydrolase (PAF-AH) treatment. Both early and late GPCSs from the three gram-positive bacteria stimulated macrophages to produce TNF-α primarily via Toll-like receptor 2 (TLR2), although late pneumococcal supernatant could stimulate macrophages via TLR4 as well. Following LTA inactivation by both methods, early GPCSs lost about 85 to 100% of its activity and late GPCSs lost about 50 to 90%. Both early and late culture supernatants from Escherichia coli could be inactivated by alkali hydrolysis but not by PAF-AH. In addition, removal of LTA from an early staphylococcal culture supernatant with a monoclonal antibody reduced about 70 to 85% of its potency. Reconstitution of inactivated early GPCSs with a highly purified LTA restored its inflammatory activity, but the restored GPCSs had higher activity than the pure LTA alone. These findings indicate that LTA is the primary TLR2 ligand in the early phase of gram-positive bacterial infection and remains a major ligand in the late phase when another TLR2 and TLR4 ligand(s) appears. In addition, our findings suggest that another gram-positive bacterial factor(s) synergizes with LTA in inducing inflammatory responses.

Innate immunity to bacteria provides the first line of defense against bacterial invasion by triggering the host’s initial inflammatory responses (7, 11, 40). Central to innate immunity are Toll-like receptors (TLRs), which recognize the conserved pathogen-associated molecular patterns and trigger the innate immune response (1, 2, 53). In the case of gram-negative bacteria, TLR4 is the primary receptor and mainly senses lipopolysaccharide (LPS), which is a major component of the outer membrane (27, 30, 48). For gram-positive bacteria, TLR2 is the primary host receptor involved in inflammatory responses to the bacteria (14, 34, 47), but the nature of TLR2 ligands is unclear.

Several components of the gram-positive bacterial cell wall have been proposed to be TLR2 ligands. Although there are controversies (17, 28, 31, 51), peptidoglycan (PGN) may be a TLR2 ligand (13). Many studies have suggested that lipoteichoic acid (LTA) is the key TLR2 ligand (12, 42, 43, 52). Indeed, highly purified LTA, as well as chemically synthesized LTA analogs, can stimulate TLR2 (39). Despite the body of evidence, a recent study reported evidence that a contaminating lipoprotein, not LTA, may have been the TLR2 ligand even when LTA was purified using an updated method (21, 23). This controversy has arisen primarily because of difficulties in obtaining LTA without structural damage and/or biologically active contaminants, although methods of purifying LTA have been greatly improved (15, 16, 33).

Therefore, to evaluate the role of LTA in innate immune responses to gram-positive bacteria, we investigated the effects of inactivating LTA on the inflammatory properties of bacterial culture supernatants, which contain molecules that are shed or released from bacteria (24, 26, 32, 46, 54, 57). Selective inactivation was possible since we have shown that platelet-activating factor acetylhydrolase (PAF-AH), a phospholipase A₂, selectively inactivates staphylococcal and pneumococcal LTAs by removing their acyl-2 chain (44) but does not affect other acylated bacterial molecules, such as LPS and phosphatidylcholine (44). We report here the effects of LTA inactivation on the inflammatory properties of gram-positive bacterial culture supernatants (GPCS).

MATERIALS AND METHODS

Reagents. Recombinant human plasma PAF-AH was kindly provided by ICOS Corporation (Bothell, WA). This enzyme was prepared by expressing the full-length cDNA of human plasma PAF-AH in Escherichia coli (50), which is as active as the native plasma PAF-AH enzyme and has been used in clinical studies (25, 29). Pefabloc SC (a serine protease inhibitor), PGN of Staphylococcus aureus, and an anti-phosphorylcholine antibody (TEPC-15) were obtained from Sigma Aldrich (St. Louis, MO). A mouse anti-LTA immunoglobulin G1 monoclonal antibody (MAB) (BD1701) and a rabbit anti-staphylococcal LTA polyclonal antibody were obtained from BioDesign (Saco, ME). An MAB to pneumolysin was purchased from NovoCastra (Newcastle, United Kingdom). An MAB to pneumococcal surface protein A (PspA) (clone Xir126) (10) and a rabbit polyclonal antibody to pneumococcal surface protein C (PspC) (9) were obtained from D. Briles (University of Alabama at Birmingham, Birmingham, AL) and L. McDaniel (University of Mississippi Medical Center, Jackson, MS), respectively. A synthetic triacylated lipoprotein (Pam3CSK4) and synthetic muramyl dipeptide (MDP) were obtained from Calbiochem (San Diego, CA). The TLR ligands

* Corresponding author. Mailing address: Department of Pathology, University of Alabama at Birmingham, 845 19th Street, South (BBRBt), Birmingham, AL 35294, Phone: (205) 934-0163, Fax: (205) 975-2149, E-mail: nahm@UAB.edu.

Published ahead of print on 22 October 2007.
synthetic double-stranded RNA [poly(I-C)], a synthetic diacylated lipoprotein (FSL-1), an oligonucleotide with unmethylated CpG (ODN1826), and a TLR7/8 agonist with phycoerythrin-labeled anti-CD25 (Becton Dickinson, San Diego, CA), which has NF-κB binding sites. The cells were grown in Ham’s F-12 medium (GIBCO-BRL, Rockville, MD) supplemented with 10% defined fetal bovine serum (GIBCO-BRL, Rockville, MD) supplemented with 10% defined FBS (HyClone, Logan, UT), 1 mg/ml of G418 (Calbiochem, La Jolla, CA), and 400 µl of hygromycin B (Calbiochem, La Jolla, CA) at 37°C in a humidified incubator with 5% CO2.

RESULTS

Early and late GPCSs have different inflammatory properties and molecular compositions. To establish whether the GPCSs primarily stimulates cells via TLR2, we determined if early or late GPCSs could activate CHO cell lines 3E10-TLR2 and 3E10-TLR4. All early GPCSs induced up-regulation of CD25 expression on 3E10-TLR2 cells but not on 3E10-TLR4 cells (Fig. 1A). In contrast, the early and late culture supernatants of E. coli activated both 3E10-TLR2 and 3E10-TLR4 cells. The response with the 3E10-TLR2 cell line was not unexpected since it is known that the CHO cells express hamster TLR4 (19, 42).

When we examined the ability of late GPCSs to stimulate the CHO cell lines expressing human TLRs, we found that staphylococcal and GBS GPCSs stimulated 3E10-TLR2 cells and did not stimulate 3E10-TLR4 cells (Fig. 1A). In contrast, late pneumococcal GPCS stimulated both 3E10-TLR2 and 3E10-TLR4 cells (Fig. 1A). Late pneumococcal GPCS should contain pneumolysin that is a TLR4 ligand (36) and is released from dead pneumococci (6). Thus, we examined a late culture supernatant of a pneumococcal strain without a pneumolysin gene and found that the supernatant did not stimulate 3E10-TLR4 cells (Fig. 1B), although it stimulated 3E10-TLR2 cells. These results suggest that the main inflammatory molecules in late GPCSs are likely TLR2 ligands, although pneumolysin in a late pneumococcal GPCS may activate cells via TLR4 as well.

To determine if pneumolysin was present only in the late pneumococcal culture supernatants, we directly examined the presence of LTA and pneumolysin in GPCSs harvested at various times. Pneumolysin and other proteins, like PspA, were easily detected in late culture supernatants; however, pneumolysin was not detected in early pneumococcal culture supernatants (Fig. 1C). In contrast, late pneumococcal GPCS stimulated 3E10-TLR2 cells and 3E10-TLR4 cells (Fig. 1D). When pneumococcal LTA was visualized with an Mab (clone TEP-15) in Western blots, bands were found in both early and late pneumococcal culture supernatants. Similarly, all staphylococcal and GBS supernatants showed LTA bands, which were visualized as 10-kb bands binding to an LTA-specific Mab (clone BD1701) (20, 58) (Fig. 1D). No LTA was detected in the E. coli culture supernatants with either the TEP-15 or BD1701 Mab (data not shown). These Western blot analyses suggested that about 0.2 to 1 µg/ml of LTA was present in early GPCSs and about 1 to 5 µg/ml of LTA was present in late GPCSs (Fig. 1D). Since 0.1 µg/ml of staphylococcal LTA is known to be inflammatory (39, 42), our results indicate that both early and late GPCSs contain biologically relevant amounts of LTA. Furthermore, the molecular compositions of early and late culture supernatants are different and consistent with their inflammatory properties.

Inflammatory capacity of GPCSs is significantly reduced (almost eliminated) by LTA inactivation. We have previously reported (44) that PAF-AH can monodeacylate pneumococcal and staphylococcal LTAs, which makes them inactive in stim-
ulation of RAW 264.7 cells. Although it is unlikely that PAF-AH, a phospholipase A2, affects other pathogen-associated molecular patterns, we next investigated the effect of PAF-AH on other TLR ligands, including poly(I-C) (a TLR3 ligand), LPS (a TLR4 ligand), R837 (a TLR7 or TLR8 ligand), ODN1826 (a TLR9 ligand), and MDP (a NOD2 ligand) (Fig. 2). We found that PAF-AH treatment did inactivate LTA, as we previously reported (44), but all other ligands were unaffected by treatment with 10 μg/ml of PAF-AH (Fig. 2). Included in the ligands tested were PGN and two synthetic lipopeptides, Pam3CSK4 (a TLR2/1 ligand) and FSC-1 (a TLR2/6 ligand) (Fig. 2), which represent other TLR2 ligands of gram-positive bacteria (13, 23). Therefore, PAF-AH is a highly specific LTA inhibitor.

To determine the role of LTA in early GPCSs, we next investigated the inflammatory properties of early (Fig. 3A) and late (Fig. 3B) GPCSs after treatment with PAF-AH or alkaline hydrolysis. For these experiments, we used 10% of early GPCS and 5% of late GPCS. Untreated early and late culture supernatants dramatically increased TNF-α production (Fig. 3A and 3B). When culture supernatants were treated with 0.2 N NaOH and neutralized with HCl, early culture supernatants from the three gram-positive bacterial species, as well as E. coli, exhibited less than 10% of the original activity (Fig. 3A). Hydrolysis also reduced the activity of late culture supernatants by about 50 to 90% (Fig. 3B). Alkaline hydrolysis could inactivate LTA, synthetic lipopeptides, and LPS, but it did not inactivate PGN or MDP (data not shown). Thus, LTA, lipoprotein, or LPS may be an important inflammatory factor in these culture supernatants.

To selectively inactivate LTA, bacterial culture supernatants were treated with PAF-AH. When early supernatants of pneumococci and staphylococci were treated with PAF-AH, 1 μg/ml PAF-AH reduced TNF-α production by 70 to 90% and 10 μg/ml of PAF-AH eliminated TNF-α production almost completely (>90%) (Fig. 3A). When the late culture supernatants of these organisms were investigated, PAF-AH treatment (10 μg/ml) reduced their ability to induce TNF-α production by 50% and 70%, respectively (Fig. 3B). The inactivation procedure itself did not affect GPCS activity since inactivation without PAF-AH did not alter GPCS activity (Fig. 3A and 3B) and addition of 10 μg/ml of PAF-AH alone did not affect the
activities of RAW 264.7 cells (data not shown) (44). In contrast to treatment of GPCSs, treatment of early and late *E. coli* culture supernatants with 10 µg/ml of PAF-AH had no effect on the inflammatory activity (Fig. 3A and 3B). These results strongly suggest that LTA is the dominant inflammatory factor in early GPCSs and is still a major factor in late GPCSs.

To further confirm the inflammatory role of LTA in GPCSs, we depleted LTA in the staphylococcal GPCS with anti-LTA antibody and examined the ability of the antibody-treated GPCS to induce RAW 264.7 cells to produce TNF-α (Fig. 4). Treatment with MAb BD1701 reduced the inflammatory properties of early staphylococcal supernatants by 80% but reduced the inflammatory properties of late supernatants by only 65%. The control mouse immunoglobulin G1 antibody had no effect on the inflammatory properties of either GPCS (Fig. 4). Also, MAb BD1701 did not reduce the inflammatory capacity of *E. coli* culture supernatant and LPS (Fig. 4). Thus, the results obtained with all three independent approaches for removing LTA supported the contention that LTA is essential for the ability of early GPCS to stimulate RAW 264.7 cells and is important for the parallel ability of late GPCSs.

Addition of purified LTA restores the inflammatory capacity of LTA-inactivated early GPCS. To investigate whether the treatments used to inactivate LTA described above also removed critical molecules other than LTA, we examined the effect of restoring the activity of deactivated early GPCS with purified LTA. Ten percent of alkali-hydrolysis-inactivated early staphylococcal supernatant, which contained about 0.02 to 0.1 µg/ml LTA prior to inactivation (Fig. 1D), exhibited the original activity when 0.1 µg/ml of staphylococcal LTA was added (Fig. 5A). In contrast, LTA by itself induced several times less TNF-α than the same amount of LTA mixed with inactivated early GPCS (Fig. 5A). Almost identical results were obtained with PAF-AH-inactivated staphylococcal supernatants (Fig. 5B). These findings demonstrate the inflammatory activity of LTA and suggest that early GPCS contains a factor(s) that synergizes with LTA for inflammatory activity.

When the pneumococcal culture supernatants were investigated in a similar experiment, we found that these supernatants could also be reconstituted with purified LTA. However, the restoration of activity required about 3 to 10 µg/ml of LTA (Fig. 5C and D), even though 10% of early pneumococcal supernatant contained only about 0.02 to 0.1 µg/ml LTA. Thus, the restoration of activity of inactivated culture supernatants required about 10 times more purified LTA. In addition, the activity of purified pneumococcal LTA was enhanced several-fold with the inactivated pneumococcal culture supernatants (Fig. 5C and D). This suggests that pneumococcal culture supernatants also contain factors that synergize with LTA for inflammatory activity.

DISCUSSION

The significance of LTA during gram-positive bacterial infection is controversial (55). Several studies (12, 42, 43, 52), including a study using chemically synthesized LTA analogs (39), have reported that LTA is a highly potent TLR2 ligand. In contrast, other workers have proposed that the factor critical for gram-positive bacterial inflammation is not LTA but lipoproteins, which contaminate LTA preparations (22, 23). The controversy arises mainly because "purified" LTA is often contaminated (13, 18, 23) or structurally damaged (38). To avoid these limitations, we examined bacterial culture supernatants after selectively removing or inactivating LTA. Our LTA inactivation and removal methods involved the use of PAF-AH and MAb BD1701, which do not inactivate two synthetic lipoproteins (Pam3CSK4 and FSC-1), PGN, or various model ligands for other TLRs (Fig. 3) (44). PAF-AH is a phospholipase A₂ and selectively monodeaclylates and inactivates LTA (44). We found that inactivation of LTA almost
completely eliminated the inflammatory properties of early GPCS (Fig. 4 and 5), whereas the inflammatory activity of the LTA-depleted early GPCS could be quantitatively restored with purified LTA (Fig. 5). These findings clearly demonstrate that LTA is the dominant inflammatory agent in early GPCS.

On their own, studies of purified LTA cannot demonstrate changes in the functional potency of LTA during its purification. This situation has been a serious limitation in the study of the inflammatory properties of LTA. However, the selective inactivation approach used here permits workers to investigate the functional potency of LTA. When we restored the level of LTA in the early GPCS with LTA inactivated to the natural

FIG. 3. TNF-α production by RAW 264.7 cells in response to culture supernatants of S. pneumoniae, S. aureus, GBS, or E. coli. The two bars on the left in each graph indicate the results for controls, including an unstimulated preparation (first bar) and a preparation stimulated with untreated bacterial culture supernatants (second bar). The third bar in each graph indicates the results for the cells stimulated with culture supernatant treated with 0.2 N NaOH, and the remaining bars (bars 4 to 7) indicate the results for the cells stimulated with supernatants treated with PAF-AH at the concentrations indicated (in µg/ml). PAF-AH was inactivated with 100 µM Pefabloc SC after the reaction. Early GPCSs were used at a concentration of 10%, late GPCSs were used at a concentration of 5%, early E. coli supernatant was used at a concentration of 0.1%, and late E. coli supernatant was used at a concentration of 0.01%. The bars indicate the means of the results for triplicate wells in a representative experiment. The error bars indicate standard deviations. P values are indicated above the bars.
early GPCS level (about 0.2 to 1 μg/ml) (Fig. 1), the inflammatory potency of the staphylococcal early GPCS was quantitatively restored (Fig. 5). This finding strongly suggests that staphylococcal LTA was not damaged by the LTA isolation procedure used in this study. In contrast to the results for staphylococcal LTA, we needed about 10-fold more pneumococcal LTA to restore the inflammatory capacity of pneumococcal early GPCS (Fig. 5). One possible explanation for this finding is that the widely used procedure for purifying pneumococcal LTA yields pneumococcal LTA with reduced activity. Consistent with our conclusion, Draing et al. reported, during preparation of this paper, that the classical purification procedure removes the alanyl group from pneumococcal LTA and thus reduces its inflammatory potency (12).

LTA inactivation also made the late GPCSs of several gram-positive bacteria less inflammatory (Fig. 4 and 5). However, unlike the results for the early supernatants, LTA inactivation left the late GPCSs with significant amounts of residual inflammatory activity. Thus, late GPCS must have a TLR2 ligand(s) other than LTA, which may be PGN or a lipoprotein. Lipoproteins should be present in late GPCS because many bacteria begin to die in the late phase of culture and because a lipoprotein(s) accounts for the majority of inflammatory properties of dead gram-positive bacteria (4, 35, 41, 45). Thus, our data

FIG. 4. TNF-α production by RAW 264.7 cells in response to bacterial culture medium (Med), staphylococcal early GPCS, staphylococcal late GPCS, purified staphylococcal LTA, E. coli early culture supernatant, or E. coli LPS. Each stimulant was used unabsorbed (None), after absorption with an irrelevant isotype-matched control MAb (mouse immunoglobulin G1 [mlG1]), or after absorption with an anti-LTA MAb (α-LTA). The bars indicate the means of the results for triplicate wells in a representative experiment. The error bars indicate standard deviations. P values are indicated above the bars.

FIG. 5. TNF-α production by RAW 264.7 cells in response to early GPCS from staphylococci (Early SA) (A and B) or from pneumococci (Early SP) (C and D). Early GPCS was inactivated by alkali hydrolysis (0.2 N NaOH) or with 10 μg/ml PAF-AH (PAF-AH). Then purified pneumococcal LTA (PnLTA) or staphylococcal LTA (StLTA) at the concentrations indicated (in μg/ml) was added to inactivated culture supernatants (10%). The bars indicate the means of the results for triplicate wells in a representative experiment. The error bars indicate standard deviations.
suggest that the dominant TLR2 ligands may vary during the different phases of infection; LTA may be a critically important TLR2 ligand in the early phase of infection, but other molecules, such as lipoproteins, may become significant TLR2 ligands in the late phase of infection.

Currently, there is a debate about whether lipoprotein or LTA is the dominant immunological molecule of gram-positive bacteria or their lysates. Staphylococci with a ΔlgtA mutation cannot produce lipoproteins, and their lysates are less stimulatory than the wild-type staphylococcal lysates (45). Yet a chemically synthesized staphylococcal LTA analog is strongly stimulatory than the wild-type staphylococcal lysates (45). Yet a chemically synthesized staphylococcal LTA analog is strongly stimulatory than the wild-type staphylococcal lysates (45).

Our results and previous observations support the idea that LTA is not a significant ligand in late GPCSs. Thus, LTA should be considered an important ligand in early GPCSs and is still a significant factor in the early phase of infection, as evidenced by the ability of LTA extracted from pneumococcal lysates to stimulate human blood cells (55). Since we did not investigate gram-positive bacteria themselves, our study did not directly address this question. However, our data do show that LTA is the dominant TLR2 ligand in early GPCSs and is still a significant ligand in late GPCSs. Thus, LTA should be considered an important TLR2 ligand. LTA is readily released into culture supernatants and is abundant in them (32, 57), whereas lipoproteins are primarily associated with bacteria and are not released into supernatants (45). In fact, consistent with our conclusions is the finding that the culture supernatant of the lipoprotein-deficient bacteria (ΔlgtA) is as immunologically active as wild-type bacterial culture supernatant (45).

In the present study, we provide evidence that the role of LTA in innate immune responses changes with the bacterial culture stage. For instance, LTA is responsible for almost all the immunostimulatory activity of early GPCSs, but late culture supernatants contain other important immunostimulatory molecules, including pneumococcal pneumolysin (Fig. 1). This suggests that the role of LTA during infections should be assessed in the context of a specific pathophysiological process. For instance, pneumolysin may be more prominent than LTA in pneumococcal pneumonia when a large number of dead pneumococci are present. Indeed, deletion or neutralization of pneumolysin makes pneumococci less effective for causing pneumonia but does not significantly affect their ability to mediate sepsis (3, 8).

In contrast, LTA would be relatively more important than other immunostimulatory molecules when the pneumococcal density is low, such as in nasopharyngeal carriage or at the beginning of a pathophysiological process. Such a bacterium-limiting step may be seen during the invasion of the endothelial barrier by a single live bacterium or early sepsis. Consistent with this, anti-LTA antibodies were shown to protect animals in a sepsis model (49, 56). Also, a recent study on pneumococcal invasion of endothelium showed that LTA could replicate the morphological changes of the endothelium that are observed with pneumococci (5).

ACKNOWLEDGMENTS

We thank W. Welch and M. Deeley at ICOS for providing PAF-AH. This work was supported by NHI grants AI-6905 and AI-30021 to M.H.N. and AI-56460 to S.M.M.

REFERENCES

Downloaded from http://iai.asm.org on December 28, 2017 by guest

Editor: B. A. McCormick