Mouse Model of Hemolytic-Uremic Syndrome Caused by Endotoxin-Free Shiga Toxin 2 (Stx2) and Protection from Lethal Outcome by Anti-Stx2 Antibody

Kristin A. D. Sauter,1 Angela R. Melton-Celsa,2 Kay Larkin,3 Megan L. Troxell,3 Alison D. O’Brien,2 and Bruce E. Magun1*

Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239; Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814; and Department of Pathology, Oregon Health and Science University, Portland, Oregon 97239

Received 14 May 2008/Returned for modification 16 June 2008/Accepted 25 July 2008

Hemolytic-uremic syndrome (HUS) results from infection by Shiga toxin (Stx)-producing Escherichia coli (STEC), most commonly serotype O157:H7, and is the most common cause of acute renal failure in children. We have developed a mouse model of HUS by administering endotoxin-free Stx2 in multiple doses over 7 to 8 days. At sacrifice, moribund animals demonstrated signs of HUS: increased blood urea nitrogen and serum creatinine levels, proteinuria, deposition of fibrin(ogen), glomerular endothelial damage, hemolysis, leukocytopenia, and neutrophilia. Increased expression of proinflammatory chemokines and cytokines in the sera of Stx2-treated mice indicated a systemic inflammatory response. Currently, specific therapeutics for HUS are lacking, and therapy for patients is primarily supportive. Mice that received 11E10, a monoclonal anti-Stx2 antibody, 4 days after starting injections of Stx2 recovered fully, displaying normal renal function and normal levels of neutrophils and lymphocytes. In addition, these mice showed decreased fibrin(ogen) deposition and expression of proinflammatory mediators compared to those of Stx2-treated mice in the absence of antibody. These results indicate that, when performed during progression of HUS, passive immunization of mice with anti-Stx2 antibody prevented the lethal effects of Stx2.
Currently, specific therapeutics for HUS are lacking, and therapy for HUS patients is primarily supportive. Although diagnostic reagents have recently been developed for early detection of Stx (57), and antibodies (Abs) (chimeric, humanized, and fully human) have been developed for potential passive immunization (6, 8, 28, 34, 35), it is unclear whether administration of anti-Stx2 therapeutics would be effective when performed after signs have developed in humans, though these Abs are protective after infection with STEC in a mouse model of infection (50, 64). Stx that is bound to polymorphonuclear leukocytes was detected for up to 1 week after diagnosis in the circulation of patients who had developed HUS (58). This suggests that delayed delivery of toxin to the microvasculature over an extended time may contribute to the clinical signs of HUS (58). For these reasons, passive immunization with anti-Stx2 Ab following the appearance of initial signs may block the development of clinical signs and alleviate disease in patients who have been diagnosed with HUS (60).

In the present studies, we have developed a model of HUS in mice by administering multiple sublethal doses of Stx2, in the absence of LPS, over a period of 7 to 8 days. Administration of a mouse monoclonal Ab (11E10) directed against Stx2 was able to halt the lethality and reverse the manifestations of HUS when Ab was delivered as late as 4 days after the initial exposure to Stx2. These data suggest that, in this model of murine HUS, Stx2-mediated renal failure required extended exposure and that administration of anti-Stx2 Ab midway through the course of administration interfered with an otherwise lethal outcome.

MATERIALS AND METHODS

Mice. C57BL/6J mice were purchased from The Jackson Laboratory, Bar Harbor, ME. Male mice aged 8 to 10 weeks of age and weighing 18 to 24 g were used throughout the experiments. Mice were housed under a 12-hour light-dark cycle and fed a standard diet ad libitum. Groups of mice were injected intraperitoneally with 50 μl of either saline, Stx2, or Stx2 plus 11E10 antibody as follows: (i) saline (control solvent) on days 0, 3, and 6; (ii) 5 ng Stx2/20 g of body weight (bw) on day 6; (iii) 1 ng Stx2/20 g bw on days 0, 3, and 6; and (iv) 1 ng Stx2/20 g bw on days 0, 3, 6, and 8. Mice were weighed on day 0 and every day thereafter. To collect 24-hour urine, mice were housed in “diuresis metabolic cages” for 24 to 48 h, during which time urine was collected. Equal amounts of urine from each group of three mice were pooled and separated via 10% SDS-PAGE. Gels were stained with Gelcode Blue staining solution. Bovine serum albumin was loaded on the same gel as a positive control.

Spectrophotometric determination of hemoglobin levels in serum. Total blood was left to coagulate at room temperature for 10 min, after which samples were centrifuged at 8,000 rpm and 4°C for 10 min and serum was collected. Biochemical determinations of blood urea nitrogen (BUN) and serum creatinine levels were performed.

Proteinuria studies. Mice were housed in “diuresis metabolic cages” for 24 to 48 h, during which time urine was collected. Equal amounts of urine from each mouse were further concentrated through 30-kDa Microapore concentration tubes. Urine samples were mixed 1:2 with 4X SDS-PAGE loading buffer and boiled at 95°C for 5 min. Samples from each group of three mice were pooled and analyzed via 10% SDS-PAGE. Gels were stained with Gelcode Blue staining solution. Bovine serum albumin was loaded on the same gel as a positive control.

Electron microscopy. After dissection of the kidneys, tissue was fixed and processed using standard procedures, including immediate fixation in 2.5% glutaraldehyde in sodium phosphate buffer for 2 hours, postfixation in osmium tetroxide, and embedding in plastic resin. Thick sections (1 μm) were stained with toluidine blue, and ultrathin sections were stained with uranyl acetate and lead citrate. Photomicrographs were taken at >11,000 magnification.

Immunohistochemistry. Mice were anesthetized and sacrificed by cervical dislocation. The kidneys were dissected, fixed in Carnoy solution for 2 h, and transferred to 70% ethanol. The organs were embedded in paraffin blocks and sectioned into 5-μm sections. After blocking in serum, the slides were incubated with primary Abs overnight at 4°C at appropriate dilutions. Slides were further processed using the Vectastain Elite ABC kit (Vector Laboratories, Burlingame, CA) according to the manufacturer’s recommendations using 3,3’-diaminobenzidine as substrate. Photomicrographs of immunohistochemical preparations in Fig. 2A and 7A were taken at >1,000 magnification at identical exposure times.

Weighing and treatment of mice. Male mice aged 8 to 10 weeks of age and weighing 18 to 24 g were housed for 24 to 48 h in “diuresis metabolic cages” (model M-D-METAB; Harbor, ME). Male mice aged 8 to 10 weeks of age and weighing 18 to 24 g were purchased from The Jackson Laboratory, Bar Harbor, ME. Mice were housed under a 12-hour light-dark cycle and fed a standard diet ad libitum. Groups of mice were injected intraperitoneally with 50 μl of either saline, Stx2, or Stx2 plus 11E10 antibody as follows: (i) saline (control solvent) on days 0, 3, and 6; (ii) 5 ng Stx2/20 g of body weight (bw) on day 6; (iii) 1 ng Stx2/20 g bw on days 0, 3, and 6; and (iv) 1 ng Stx2/20 g bw on days 0, 3, 6, and 8. Mice were weighed on day 0 and every day thereafter. To collect 24-hour urine, mice were housed in “diuresis metabolic cages” for 24 to 48 h, during which time urine was collected. Equal amounts of urine from each group of three mice were pooled and separated via 10% SDS-PAGE. Gels were stained with Gelcode Blue staining solution. Bovine serum albumin was loaded on the same gel as a positive control.

Spectrophotometric determination of hemoglobin levels in serum. Total blood was left to coagulate at room temperature for 10 min, after which samples were centrifuged at 8,000 rpm and 4°C for 10 min and serum was collected. Biochemical determinations of blood urea nitrogen (BUN) and serum creatinine levels were performed.

Proteinuria studies. Mice were housed in “diuresis metabolic cages” for 24 to 48 h, during which time urine was collected. Equal amounts of urine from each mouse were further concentrated through 30-kDa Microapore concentration tubes. Urine samples were mixed 1:2 with 4X SDS-PAGE loading buffer and boiled at 95°C for 5 min. Samples from each group of three mice were pooled and separated via 10% SDS-PAGE. Gels were stained with Gelcode Blue staining solution. Bovine serum albumin was loaded on the same gel as a positive control.

Spectrophotometric determination of hemoglobin levels in serum. Total blood was left to coagulate at room temperature for 10 min, after which samples were centrifuged at 8,000 rpm and 4°C for 10 min and serum was collected. Biochemical determinations of blood urea nitrogen (BUN) and serum creatinine levels were performed.

Proteinuria studies. Mice were housed in “diuresis metabolic cages” for 24 to 48 h, during which time urine was collected. Equal amounts of urine from each mouse were further concentrated through 30-kDa Microapore concentration tubes. Urine samples were mixed 1:2 with 4X SDS-PAGE loading buffer and boiled at 95°C for 5 min. Samples from each group of three mice were pooled and separated via 10% SDS-PAGE. Gels were stained with Gelcode Blue staining solution. Bovine serum albumin was loaded on the same gel as a positive control.

Spectrophotometric determination of hemoglobin levels in serum. Total blood was left to coagulate at room temperature for 10 min, after which samples were centrifuged at 8,000 rpm and 4°C for 10 min and serum was collected. Biochemical determinations of blood urea nitrogen (BUN) and serum creatinine levels were performed.

Proteinuria studies. Mice were housed in “diuresis metabolic cages” for 24 to 48 h, during which time urine was collected. Equal amounts of urine from each mouse were further concentrated through 30-kDa Microapore concentration tubes. Urine samples were mixed 1:2 with 4X SDS-PAGE loading buffer and boiled at 95°C for 5 min. Samples from each group of three mice were pooled and separated via 10% SDS-PAGE. Gels were stained with Gelcode Blue staining solution. Bovine serum albumin was loaded on the same gel as a positive control.

Spectrophotometric determination of hemoglobin levels in serum. Total blood was left to coagulate at room temperature for 10 min, after which samples were centrifuged at 8,000 rpm and 4°C for 10 min and serum was collected. Biochemical determinations of blood urea nitrogen (BUN) and serum creatinine levels were performed.
Tris-HCl (pH 8.3)–75 mmol/liter KCl–3 mmol/liter MgCl₂ was incubated at 90°C for 3 min and then placed on ice for 5 min, followed by an incubation at room temperature for 5 min. The reverse transcription was initiated by the addition of 10 μl of a mixture of 2 mmol/liter deoxynucleoside triphosphates and 30 U SuperScript (Life Technologies, Inc.) in 50 mmol/liter Tris-HCl (pH 8.3), 75 mmol/liter KCl, 3 mmol/liter MgCl₂, 10 mmol/liter dithiothreitol, followed by an incubation at 48°C for 15 min, when the reactions were stopped by the addition of 5 mmol/liter EDTA. Reaction products were precipitated in ethanol, resuspended in formamide gel loading buffer, heat denatured, and electrophoresed in an 8% acrylamide sequencing gel, which was subsequently dried and exposed to a PhosphorImager screen.

Multiplex cytokine detection. Serum samples were analyzed using a customized multiplex mouse cytokine kit from Linco Research (St. Charles, MO) and detected on the LiquiChip workstation (Qiagen, Valencia, CA). Each sample was analyzed in duplicate.

Statistical analysis. Individual groups were compared using unpaired t test analysis. To estimate P values, all statistical analyses were interpreted in a two-tailed manner. P values of <0.05 were considered statistically significant.

RESULTS

To examine the consequences of Stx2 administered intraperitoneally to C57BL/6J mice, we first determined the toxicity of Stx2 when administered as a single dose. Dose-response experiments determined that the 50% lethal dose was 3 ng Stx2/20 g bwt (data not shown). In initial experiments, administration of a lethal dose of Stx2 (a single dose of 5 ng Stx2/20 g bwt, hereafter referred to as “1x5”) resulted in weight loss detected 24 h later, which continued for 3 days (Fig. 1A). At that time, animals were moribund, having lost at least 20% of their bwt and displaying tremors and ataxia. For ethical reasons, these mice were euthanized on the third day following injection of Stx2. BUN levels from these animals increased from 31.6 to 103.8 mg/dl (P < 0.05), but creatinine levels failed to differ significantly (Fig. 1B). Urine from these animals failed to show signs of albuminuria, an indicator of renal failure, as determined by PAGE (Fig. 1C). The presence of hemoglobin in serum was evaluated by determining the absorbance spectrum of serum. Mice receiving 1x5 Stx2 showed an increased spectral absorbance profile characteristic of free hemoglobin (7) (Fig. 1D). Animals receiving 1x5 Stx2 failed to show an increase in circulating neutrophils, although they exhibited a significant decrease in circulating lymphocytes (Fig. 1E). From these data, we concluded that administration...
of 1x5 Stx2 triggered some hemolysis and a modest impairment of renal function, as evidenced by increased BUN levels, but failed to induce other significant signs of renal dysfunction, such as increased creatinine and proteinuria levels.

Signs of HUS in humans usually do not appear earlier than 1 week following exposure to STEC (60). We considered, therefore, that mice may require an extended time interval between initial exposure to Stx2 and the development of signs of HUS. First, we investigated whether lower doses of Stx2 that allowed mice to survive for at least 1 week would permit the animals to develop more-severe manifestations of HUS, including renal failure. However, single doses of Stx2 lower than 5 ng/20 g bwt that permitted animals to survive more than 3 days were ineffective in inducing either toxicity or signs of renal failure (not shown). We then tested whether administration of successive, lower doses of Stx2 over an extended time course would permit the animals to develop signs characteristic of HUS in humans. When we administered two injections of 1 ng Stx2/20 g bwt (at days 0 and 3), mice showed minor signs of toxicity and renal failure when sacrificed 8 days later (data not shown). We then injected animals with three doses of 1 ng Stx2/20 g bwt at day 0, day 3, and day 6 (hereafter referred to as “3x1”). The mice receiving 3x1 Stx2 did not begin to lose significant bwt until day 5 (Fig. 1A). By day 7 or 8, these mice had lost a total of 20 to 25% of their initial bwt and were euthanized. Unlike mice receiving 1x5 Stx2, these animals did not exhibit neurological signs at time of sacrifice. BUN levels increased nearly sixfold \((P < 0.001) \) in the 3x1 Stx2 mice, while creatinine levels increased 2.5-fold \((P < 0.01) \) compared to those of saline-injected control mice (Fig. 1B). The urine of the 3x1 Stx2 mice displayed increased protein content with a major protein band corresponding in size to serum albumin and additional bands of proteins with higher molecular weight (Fig. 1C). The increased serum levels of BUN and creatinine and the appearance of proteinuria suggested that administration of 3x1 Stx2 resulted in compromised renal function. Furthermore, spectrophotometric analysis of serum from these mice revealed hemolysis, as evidenced by levels of hemoglobin in the serum that were greater than that seen in 1x5 animals (Fig. 1D). Unlike the 1x5 mice, the 3x1 mice exposed for 7 to 8 days developed increased numbers of circulating neutrophils (from 738.8 ± 83.1 cells/μl in control mice to 1,047.6 ± 223.8 cells/ml in Stx2-treated mice \([P < 0.05] \)) and decreased numbers of lymphocytes (from 3,779.6 ± 767.1 cells/ml in control mice to 566 ± 327.9 cells/ml in Stx2-treated mice \([P < 0.001] \)) (Fig. 1E).

Glomerular TMA is a distinguishing feature of human HUS that has been difficult to recreate in animal models. Compared with those from animals treated with saline, kidneys from mice receiving 1x5 Stx2 showed a small amount of fibrinogen deposition in glomerular vessels, as demonstrated by both antifibrinogen immunohistochemistry (Fig. 2A) and immunoblotting (Fig. 2B). However, mice injected with 3x1 Stx2 demonstrated abundant deposition of fibrinogen in the glomerular capillary loops, with some capillaries appearing to be completely occluded (Fig. 2A). The deposition of increased fibrinogen in kidneys from these mice was confirmed by immunoblotting (Fig. 2B). Transmission electron microscopy of kidneys from two 3x1 Stx2 animals revealed enlarged subendothelial zones (asterisk, Fig. 3B) containing flocculent materi-
tokines (tumor necrosis factor alpha [TNF-α], interleukin-1α [IL-1α], IL-1β, and IL-6), chemokines (CCL2/monocyte chemoattractant protein 1 and CXCL1/Gro-α), transcription factors (c-Jun, c-Fos, and EGR1), and a surface adhesion protein (intercellular adhesion molecule 1). The results were expressed as increase in RNA expression in Stx2-treated animals over that of saline controls, using glyceraldehyde phosphate dehydrogenase mRNA as a control to standardize the samples (Fig. 4A). The administration of either 1x5 or 3x1 Stx2 significantly elevated the expression of the majority of transcripts investigated. The expression levels of two gene transcripts, CXCL1/Gro-α and IL-6, were significantly greater in the 3x1 Stx2-treated mice than in the 1x5 Stx2-treated mice.

We employed a customized multiplex mouse cytokine kit to measure the expression of several proinflammatory cytokines and chemokines in the serum of mice treated with saline or Stx2. Administration of either 1x5 or 3x1 Stx2 significantly elevated the levels of all proinflammatory proteins investigated compared to those in saline-injected control mice (Fig. 4B). However, levels of these proteins in sera from 1x5 and 3x1 mice did not differ significantly from each other (Fig. 4B). The data shown in Fig. 4B suggest that the Stx2-induced increase in expression of transcripts encoding proinflammatory cytokines and chemokines was associated with an increased level of corresponding proteins in the serum. Importantly, these data indicated that the induced expression of proinflammatory mRNAs associated with Stx2 intoxication resulted in the synthesis of proteins directed by those mRNAs, even in the face of potentially decreased levels of protein synthesis that may occur following Stx2-induced damage to 28S rRNA.
Stx2-mediated lesions in 28S rRNA. Stx2 may impair kidney function by acting directly on cells of the kidney and/or indirectly by inducing the release of inflammatory mediators into the systemic circulation from body tissues. To determine the existence of damage to renal 28S rRNA specifically caused by Stx2, we applied primer extension analysis, a technique that produces truncated radiolabeled transcripts at the site of depurination (A4256) in 28S rRNA (21). RNA extracted from the kidneys of mice exposed to 1x5 Stx2 displayed the strongest lesion-specific signals (Fig. 5). Lesions in A4256 were also observed in the 3x1 Stx2 mice but were diminished in amount compared with lesions produced by 1x5 Stx2. These results indicated that a single dose of 5 ng Stx2 produced more lesions in renal 28S rRNA than did three successive injections of 1 ng Stx2.

Passive immunization by anti-Stx2 Ab. To determine whether administration of anti-Stx2 Ab could prevent progression of HUS in our model, we administered 11E10, a monoclonal Ab, to mice exposed to 3x1 Stx2. For mice receiving three injections of 1 ng Stx2/20 g bwt (on days 0, 3, and 6), we injected a single bolus of 30 ng 11E10 Ab/20 g bwt at different times prior to sacrifice at day 7 to 8. All mice that received Ab on day 4 did not develop subsequent weight loss and appeared normal at time of sacrifice on day 8 (Fig. 6A). However, when Ab was administered to mice on day 5, rescue of some, but not all, mice was achieved (data not shown). Administration of Ab on day 6 failed to rescue any mice (data not shown). To determine whether mice receiving Ab on day 4 would develop impaired kidney function, we evaluated levels of BUN and serum creatinine at day 8 (2 days after mice received the final dose of 1 ng Stx2/20 g bwt). Levels of BUN and serum creatinine in these mice were not different from those in saline-injected control animals (Fig. 6B). In addition, the level of free hemoglobin appearing in sera of 3x1 mice was not increased in the sera of 3x1 Stx2 mice receiving 11E10 Ab on day 4 (Fig. 6C), suggesting that administration of anti-Stx2 Ab to the 3x1 Stx2 mice prevented intravascular hemolysis. The neutrophilia and lymphocytopenia normally present in 3x1 mice receiving anti-Stx2 Ab to the 3x1 Stx2 mice were not present in 3x1 mice receiving anti-Stx2 Ab on day 4 (Fig. 6D). In addition, the administration of 3x1 Stx2 and 11E10 Ab on day 4 reduced the deposition of fibrinogen in kidneys harvested at 8 days, as determined by both immunohistochemistry and immunoblotsing (Fig. 7A and B).

The administration of 11E10 Ab on day 4, in concert with 3x1 Stx2, significantly decreased the expression of the majority of proinflammatory mRNA transcripts that were investigated in the kidneys. Expression of most transcripts decreased by more than 50% compared to kidneys from 3x1 mice that did not receive 11E10 Ab (Fig. 4A). There was also a coordinate decrease in abundance of circulating proinflammatory proteins in sera from these mice compared with mice that had received 3x1 Stx2 alone (Fig. 4B). 3x1 mice receiving 11E10 Ab on day

FIG. 5. Detection of lesions at A4256 in 28S rRNA by primer extension. Groups of mice were injected with Stx2 or saline as described for Fig. 1. Total RNA was purified from kidneys of four or five mice per group. Each lane represents a different mouse. Truncated transcripts at A4256 were detected from all Stx2-treated mouse kidneys (middle arrow).

FIG. 6. Analysis of bwt and blood parameters after administration of Stx2 with or without 11E10. Mice received saline, the 3x1 treatment, or the 3x1 treatment plus 11E10 (mouse monoclonal Ab against Stx2) on day 4. (A) Weight loss in mice injected with Stx2 with or without 11E10. Each bar represents the mean value for five mice ± standard deviation. (B) Measurement of BUN and creatinine levels in sera. Data for saline-injected (triangles) and 3x1 (squares) mice have been shown in Fig. 1B; these are included here for comparison with the 3x1 plus 11E10 group. Data are the averages of five mice ± standard deviations. Each circle for 3x1 plus 11E10 represents one mouse; black bars indicate the means of samples for the group. Brackets indicate levels of significance between groups: *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.001. (C) Measurement of hemoglobin by absorption spectrophotometry of sera. Absorption spectrophotometry of sera from two saline-injected, 3x1, and 3x1 plus 11E10 mice. (D) Measurement of neutrophil and lymphocyte numbers. Data for saline-injected (triangles) and 3x1 (squares) mice have been shown in Fig. 1E; these are included here for comparison with the 3x1 plus 11E10 group. Data represent the averages of five mice ± standard deviations. Each circle for 3x1 plus 11E10 represents one mouse; black bars indicate the means of samples for the group. Brackets indicate levels of significance between groups: *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.001.
4 remained healthy and displayed normal renal function at the time of sacrifice 4 weeks later (data not shown).

DISCUSSION

Stx is the main etiologic factor in the pathogenesis of HUS (40). Although the administration of Stx alone to primates reproduced signs of HUS (52), Stx alone has not been able to produce HUS in a primate model (40). Furthermore, LPS has been shown to either reduce or enhance Stx toxicity in murine models, depending on the time and dose of administration (38). In this study, we have sought to develop a mouse model of HUS by administering endotoxin-free Stx2.

Administration of a single lethal dose of Stx2 to mice induced hemolysis, lymphocytopenia, and modest impairment of renal function, as evidenced by increased BUN levels at 72 h. Although the lethal dose of Stx2 produced modest renal dysfunction, it was not able to generate many of the significant indicators of renal failure, such as increased creatinine and proteinuria levels. Mice exposed to a single bolus (5 ng/20 g bwt) of Stx2 developed tremors and ataxia prior to death, indicating that the early demise of these mice may have resulted from toxicity for the nervous system. Stx binds to Gb3 receptors in neurons of the central nervous system of mice (26) and has been found to produce brain damage in mice (25). Neurological damage in humans is a frequent complication in HUS (32, 51, 61) and in experimental animals (rabbits) exposed to Stx (14, 56). We reasoned that administration of a lower dose of Stx2 may allow the mice to survive for a longer period of time, permitting them to develop a symptomatic course that would more completely reproduce the characteristics of HUS. Although administration of low doses of Stx2 in a single or double injection was ineffective in producing the array of signs that characterizes HUS, the administration of three successive injections of 1 ng Stx2/20 g bwt at 72-h intervals resulted in the development of many of the manifestations of HUS that develop in humans. The 3x1 mice began losing weight 4 days after the initial injection and, at the time of sacrifice (7 to 8 days), manifested increased BUN, serum creatinine, and proteinuria levels, all of which are indicators of compromised renal function. In addition, these mice developed hemolysis, lymphocytopenia, and neutrophilia, unlike mice that received saline alone. It should be noted that, although analysis of the above indicators was performed at different times in 1x5 mice than in 3x1 mice, the animals at the time of sacrifice had undergone a comparable loss of bwt. Injury of the endothelium contributes to the development of microvascular thrombosis, a common feature of HUS that has been tied to development of renal failure in human patients (40, 42, 43). Endothelial cell injury and thrombosis have been difficult to reproduce in Stx-induced animal models (38, 39, 47, 59). The degree of fibrinogen deposition in glomerular capillaries was greater in 3x1 than in 1x5 mice; some capillaries in the 3x1 mice appeared to be completely occluded (Fig. 2).

Abundant evidence suggests that Stx-induced HUS involves an acute inflammatory response, the magnitude of which is a predictor of clinical outcome. Patients with HUS display markedly elevated levels of proinflammatory cytokines such as...
TNF-α and IL-1β and chemokines (45) such as CCL2/monocyte chemotactic protein 1, CXCL8/IL-8, CXCL1/Gro-α, and CXCL3/Gro-γ (31, 37, 40, 42). Excretion of urinary TNF-α and IL-6 is elevated during the acute phase of HUS in patients (D. Karpman, A. Andreasson, H. Thyssell, B. S. Kaplan, and C. Svanborg, presented at the Second International Symposium and Workshop on Verocytotoxin-Producing Escherichia coli Infections, Bergamo, Italy, 1994). Stx has been shown to stimulate the release of proinflammatory cytokines from several types of cultured cells, including macrophages (12), renal podocytes (18), and human vascular endothelial cells (16). Increased expression of proinflammatory transcripts and the presence of proinflammatory chemokines and cytokines in the sera of Stx2-treated mice provided evidence that these animals developed an abundant inflammatory response. At the time of death, expression of circulating proinflammatory mediators was similar in singly and multiply injected mice, suggesting that the development of multiple manifestations of HUS may require an extended exposure to these circulating mediators.

Depurination of a single adenine (A4256 in mice) in a conserved region of the 28S rRNA by Stx is similar to that performed by ricin, a related toxin (11), and is the single known mechanism by which the toxins transduce their signals following entrance into cells (21). This event leads not only to inhibition of protein translation but also to the rapid activation of SAPKs, p38 and JNK, by activating kinases situated upstream in the activating cascade (21, 53). Activation of SAPKs and the subsequent increased production of proinflammatory transcripts occur in the presence of only partial translational inhibition (27). As a consequence, increased levels of transcribed proinflammatory mRNA molecules are capable of being translated into functional proteins (27). Importantly, the present study shows that, similarly to ricin, the Stx2-induced expression of proinflammatory mRNAs resulted in the synthesis of proinflammatory proteins, despite potentially decreased levels of protein synthesis. However, this study does not address whether the cells directly targeted by Stx2 are the ones that secrete the proinflammatory proteins that appear in sera. The increased appearance of proinflammatory proteins may occur secondarily in response to signals initiated in cells that have internalized the Stx2. The 1x5 and 3x1 mice expressed similar levels of proinflammatory transcripts and protein products at their respective times of sacrifice (Fig. 4). However, because analysis of expressed gene products was performed at different times in the two groups (3 days versus 7 to 8 days), the course of expression of mRNA or protein over the exposure interval for each group of mice remains unknown. We postulate that, although 3x1 mice were exposed to a smaller amount of Stx2 than were 1x5 mice, the increased time of exposure over the longer period was responsible in large part for the development of proinflammatory consequences and renal failure.

Detection of lesions in rRNA by primer extension analysis showed that the accumulated damage in 1x5 mice at 72 h was greater than that in 3x1 mice, suggesting that the development of Stx2-mediated renal failure may require an extended time to permit the animals to develop signs characteristic of HUS. In human disease, 10 to 15% of infected individuals progress to HUS 1 week after the initial onset of signs (1). Our results suggest that the administration of small, multiple injections of Stx2 may reproduce the development of HUS that occurs in humans over an extended period of time.

To determine whether administration of an anti-Stx2 Ab would prevent progression of HUS in our mouse model, we administered 11E10, a specific monoclonal Ab that recognizes the A subunit of Stx2, at various times after the second dose of 1 ng Stx2/20 g bwt. 3x1 mice receiving 11E10 on day 4 showed normal renal function and normal neutrophil and lymphocyte levels and lacked hemolysis at the time of sacrifice. In addition, these mice showed decreased fibrinogen deposition compared to that of Stx2-treated mice in the absence of Ab. The inflammatory response, as determined by measurement of proinflammatory transcripts in the kidney and demonstration of protein in the sera, was reduced by more than 50% in proinflammatory mRNAs and proteins that were examined. Taken together, these results indicate that passive immunization with anti-Stx2 Ab in mice was capable of preventing the lethality of the toxin, even after initial exposure to Stx and in the continued presence of circulating Stx.

Current treatment of HUS in patients is supportive, and effective therapeutic intervention has not been successful (1, 60). Our results suggest that passive immunization against Stx5 may be therapeutically effective in humans at risk of developing HUS, if Ab is able to be administered at an early time after development of signs and before the accumulated effects of HUS have resulted in irreversible structural damage.

ACKNOWLEDGMENTS

Supported by the National Institutes of Health (grants DK079419 [K.A.D.S.], ES089456 and AI059335 [B.E.M.], and AI20148 [A.D.O.]).

REFERENCES

after verotoxin-producing Escherichia coli infection. Presse Med. 24:99–101. [In French.]
tides antibodies prevent systemic complications of Escherichia coli O157:H7 in
5899.
479.
ization of mononucleotides antibodies to Shiga-like toxin II of enterohem-
orrhagic Escherichia coli O157:H7 in the mononuclear antibodies in a colony
thy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura.
Kidney Int. 60:831–846.
50. Rutjes, N. W., B. A. Binnington, C. R. Smith, M. D. Maloney, and C. A.
Lindwood. 2002. Differential tissue targetting and pathogenesis of verotoxins
Shiga-like toxin II variant, and ricin are all single-site RNA N-glyco-
sidase from 28 S RNA when microinjected into Xenopus oocytes. J. Biol. Chem.
266:596–601.
54. Sheth, K. J., H. M. Swick, and N. Haworth. 1986. Neurological involv-
Response to Shiga toxin-1, with and without lipopolysaccharide, in a priate
C. M. Thorpe. 2003. Shiga toxin 1 triggers a ribotoxic stress response leading to
apoptosis and INK activation and induction of apoptosis in intestinal epithelial
57. Suzuki, K., K. Tateda, T. Matsumoto, F. Gondaira, S. Tsujimoto, and K.
Yamaguchi. 2000. Effects of interaction between Escherichia coli verotoxin
and lipopolysaccharide on cytotox induction and lethality in mice. J. Med.
58. Taguchi, T., H. Uchida, N. Kiyokawa, T. Mori, N. Sato, H. Horie, T. Takeda,
and inflammatory responses in the central nervous system of a rabbit treated
Park. 2007. Rapid detection of Shiga toxin-producing Escherichia coli by
2001. Detection of verocytotoxin bound to circulating polymorph-
phonuclear leukocytes of patients with hemolytic uremic syndrome. J. Am.
62. Tesh, V. L., J. A. Burris, J. W. Owens, M. V. Gordon, E. A. Wadolkowski,
and J. R. Tesh. 1993. The mouse model of Shiga-like toxin 1-induced

Editor: B. A. McCormick