The RNA Chaperone Hfq Is Required for Virulence of Bordetella pertussis

Ilona Bibova, a Karolina Skopova, a Jiri Masin, a Ondrej Cerny, a David Hot, b Peter Sebo, a Branislav Vecerek a

Institute of Microbiology, ASCR, v.v.i., Prague, Czech Republic; Laboratoire Transcriptomique et Genomique Appliquée, Institut Pasteur de Lille, Lille, France

Bordetella pertussis is a Gram-negative pathogen causing the human respiratory disease called pertussis or whooping cough. Here we examined the role of the RNA chaperone Hfq in B. pertussis virulence. Hfq mediates interactions between small regulatory RNAs and their mRNA targets and thus plays an important role in posttranscriptional regulation of many cellular processes in bacteria, including production of virulence factors. We characterized an hfq deletion mutant (Δhfq) of B. pertussis 18323 and show that the Δhfq strain produces decreased amounts of the adenylate cyclase toxin that plays a central role in B. pertussis virulence. Production of pertussis toxin and filamentous hemagglutinin was affected to a lesser extent. In vitro, the ability of the Δhfq strain to survive within macrophages was significantly reduced compared to that of the wild-type (wt) strain. The virulence of the Δhfq strain in the mouse respiratory model of infection was attenuated, with its capacity to colonize mouse lungs being strongly reduced and its 50% lethal dose value being increased by one order of magnitude over that of the wt strain. In mixed-infection experiments, the Δhfq strain was then clearly outcompeted by the wt strain. This requirement for Hfq suggests involvement of small noncoding RNA regulation in B. pertussis virulence.

The RNA chaperone Hfq was discovered and characterized more than 40 years ago in Escherichia coli as a host factor required for replication of the bacteriophage Qβ (1). Biochemical and structural studies revealed that Hfq forms a hexameric ring-shaped doughnut structure and contains two distinct RNA binding surfaces on proximal and distal sites of the hexamer (2–4). More recently, Hfq has been recognized as a global posttranscriptional regulatory factor involved in numerous functions in bacteria (5). Several lines of evidence indicate that in its hexameric form Hfq binds cellular mRNAs and small noncoding RNAs (sRNAs) at its distal and proximal sites, respectively (2, 6). In addition, binding of Hfq was shown to induce conformational changes in mRNAs and sRNAs, as well as to modulate their stability (7–10). Bacterial trans-encoded sRNAs are transcribed in response to various stresses and regulate gene expression by base pairing with target mRNAs, resulting in either translational repression or repression (11–13). Currently, the ability of the Hfq protein to facilitate interaction between sRNAs and their target mRNAs is considered to be its most prominent feature (14). Disruption of the hfq gene causes broadly pleiotropic effects in Escherichia coli, such as a decreased growth rate and increased sensitivity to stresses, such as UV or high osmolarity (15), showing that Hfq plays a general role in bacterial physiology. Indeed, Hfq-associated sRNAs were shown to be involved in regulation of a variety of cellular processes, including catabolite repression, iron homeostasis, cell envelope integrity, and pathogenesis (16–20). Accordingly, Hfq appears to be essential for the physiological fitness and virulence of a broad spectrum of bacterial pathogens (21). In one of the first studies of Hfq, Hfq was shown to be required for efficient translation of the σ5 factor of Salmonella enterica serovar Typhimurium, a factor that is crucial for virulence (22). Consequently, an hfq mutant of S. Typhimurium was found to be highly attenuated in a mouse infection model (23). Similarly, experiments employing murine or rat infection models revealed a role of Hfq in the virulence of several pathogenic bacteria (24–28).

Bordetella pertussis is the causative agent of human whooping cough (pertussis), a highly contagious disease that remains one of the 10 most common causes of death from infectious diseases worldwide (29). According to WHO, pertussis accounts for the death of almost 300,000 infants annually, predominantly in developing countries. Despite extensive vaccination programs, the incidence of pertussis is again on the rise even in industrialized countries (30–32). Therefore, there is an urgent need for a better understanding of the molecular mechanisms underlying the pathogenesis of B. pertussis infection. B. pertussis produces a complex array of virulence factors, including adhesins and toxins (33). Among the major adhesins are the filamentous hemagglutinin (FHA), fimbriae, and pertactin. These factors ensure adhesion of B. pertussis to human respiratory tract cells (34). Furthermore, B. pertussis produces two major toxins required for virulence, the pertussis toxin (PT) and the adenylate cyclase (AC) toxin (ACT). The first catalyzes transfer of an ADP-ribosyl group onto the Gαi subunit of the heterotrimeric guanine (G) nucleotide regulatory proteins that regulate endogenous adenyl cyclase activity (35, 36). The second toxin carries out unregulated conversion of cytosolic ATP to the key second messenger signaling molecule cyclic AMP (cAMP) (37, 38). Both toxins, hence, manipulate cAMP levels in cells, and their cytotoxic enzymatic activities blunt the innate immunity functions of mammalian phagocytes by short-circuiting central signaling pathways. Together, these toxin activities constitute a strategy for B. pertussis to modulate the host immune system and evade its immune response (39–41).

Transcription of the majority of B. pertussis virulence genes, including adhesins and toxins, is controlled by a two-component...
system encoded by the \(bvgs\) locus. This consists of a transmembrane sensor kinase (BvgS) and of a response regulator (BvgA), which in its phosphorylated form binds to promoter regions and activates transcription of dependent virulence genes (42). The activity of the BvgAS system can be modulated under laboratory conditions, as growth of \(B. pertussis\) cells at 37°C induces BvgAS activity, while growth at temperatures below 25°C or in the presence of millimolar amounts of sulfate or nicotinic acid renders the BvgAS system inactive (43, 44).

Posttranscriptional regulation of \(B. pertussis\) virulence has not been studied, and data on \(hfq\)-mediated and sRNA-dependent posttranscriptional regulation of virulence in \(B. pertussis\) are lacking. Recently, several sRNAs were identified and characterized in \(B. pertussis\) (45), and the gene for an \(Hfq\) homologue was identified in the genomes of both fully sequenced \(B. pertussis\) strains, Tohama I and 18323 (http://www.sanger.ac.uk). However, its role in the virulence of \(B. pertussis\) has not yet been studied.

In this study, we examined the function of \(Hfq\) in \(B. pertussis\) virulence using an \(hfq\) deletion strain of \(B. pertussis\) 18323 (WHO reference strain). We show that compared to its parental strain, the \(\Delta hfq\) strain is impaired in growth and produces reduced amounts of one of the key virulence factors of \(B. pertussis\), the adenylate cyclase toxin. Examination of the role of \(Hfq\) in \(B. pertussis\) virulence in vitro and in vivo revealed that the \(\Delta hfq\) strain is significantly attenuated. Moreover, in the mixed-infection experiment, the \(hfq\) mutant was clearly outcompeted by its parental strain.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The WHO reference strain \(Bordetella pertussis\) 18323 (ATCC strain 97-97) and its derivatives were grown on Bordet-Gengou agar (BGA) supplemented with 15% defibrinated sheep blood for 3 to 4 days at 37°C. For liquid cultures, bacteria were grown in Stainer-Scholte (SS) medium (46) at 37°C. Samples for protein analyses were taken at early exponential phase (optical density at 600 nm \(\text{OD}_{600}\); 0.7 and 0.4 for the wild-type [wt] and \(\Delta hfq\) strains, respectively), late exponential phase (\(\text{OD}_{600}\) ~1.3 and 0.7, respectively), early stationary phase (\(\text{OD}_{600}\) ~3.0 and 1.3, respectively), and late stationary phase (\(\text{OD}_{600}\) of >4.5 and >1.8, respectively) of growth. Escherichia coli strains were cultured on Luria-Bertani (LB) agar or in LB broth (47). When appropriate, culture media were supplemented with 5 \(\mu\)g/ml of chloramphenicol (Cm) to maintain the \(\Delta hfq\) strain. The plasmid was used to construct the \(B. pertussis\) \(\Delta hfq\) strain resistant to chloramphenicol by homologous recombination as described above. To obtain a strain in which the \(hfq\) deletion is complemented, plasmid pBRRhfq carrying the \(hfq\) gene of the \(B. pertussis\) 18323 strain including its own promoter sequence was constructed as follows: the fragment containing the \(hfq\) gene was amplified by PCR using the forward primer 5'-CCCCTGGATCCATATGATCCGC-3' and the reverse primer 5'-CTCCGATGATCCGC-3'. The blunt-ended PCR product was inserted into the EcoRV site of the cloning vector pBRR1MCS, which replicates in the \(B. pertussis\). The resulting plasmid, pBRRhfq, was transformed into competent cells of \(E. coli\) SM10 and transferred into the \(B. pertussis\) 18323 \(\Delta hfq\) strain by conjugation. All plasmid constructs were confirmed by DNA sequence analysis.

Determination of enzymatic and biological activities of ACT. For quantification of the amounts of produced and secreted ACT in cultures, the \(B. pertussis\) 18323 wt, \(\Delta hfq\), and complemented strains were cultivated in SS medium. Samples were taken in duplicate at the times indicated in Fig. 1B and C. The first sample was directly mixed with 8 M urea (1:1) and served for determination of total AC enzyme activity (that secreted into medium plus that associated with cells). The second aliquot was first centrifuged at 16,000 \(\times\) g to pellet the cells. The supernatant obtained was then mixed with 8 M urea (1:1) and was used to determine the AC activity of the toxin secreted into the medium. For determination of the toxin secretion efficiency, presented in Fig. 1E, the activity of the AC toxin attached to the bacterial surface was assayed in the pellet fraction. Cell pellets were resuspended in 4 M urea, incubated for 20 min at room temperature to extract the toxin, and centrifuged for 10 min at 13,000 rpm. The soluble fraction was used for determination of extracytoplasmic toxin activity. Aliquots of extracts and of washed cells were loaded on SDS-polyacrylamide gels to check the integrity of the cells after extraction with 4 M urea. AC activities in samples were normalized to the \(\text{OD}_{600}\) of the culture.

**Cell binding and the invasive capacity of the ACT present in urea extracts of bacterial cells were determined as previously described (51). Briefly, sheep erythrocytes (5 \(\times\) 10^9 cells/ml) were incubated at 37°C in TNC buffer (20 mM Tris at pH 8.0, 150 mM NaCl, 2 mM CaCl_2) with urea extracts of wt and \(\Delta hfq\) cells adjusted to an 80 mM final urea concentration and equal AC enzyme activity. Mock urea buffer was diluted into control erythrocyte suspensions. After 30 min, cells were washed three times in TNE buffer (20 mM Tris at pH 8.0, 150 mM NaCl, 5 mM EDTA) to remove unbound ACT and divided into two aliquots. The first aliquot was directly used to determine the amount of cell-associated AC activity. The second aliquot was treated with 20 \(\mu\)g of trypsin for 15 min at 37°C in order to inactivate the extracellular AC toxin which did not translocate into cells. Fifty micrograms of soybean trypsin inhibitor was added to stop the reaction before the samples were washed three times in TNE buffer and used to determine the amount of cell-invasive AC activity.

Separation of total membrane fractions. The \(B. pertussis\) 18323 wt and \(\Delta hfq\) strains were cultivated in SS medium at 37°C. Samples (\(\approx\)20 \(\text{OD}_{600}\) units) were harvested at late exponential and stationary phases of growth, and cells were pelleted by centrifugation, washed in 20 ml of ice-cold Tris-NaCl (20 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA), and resuspended in 10 ml of Tris-NaCl containing protease inhibitor cocktail.
(Complete Mini; Roche) and 0.1 μg/ml lysozyme. Cells were broken by sonication, and samples were cleared of unbroken cells by centrifugation at 5,000 x g for 10 min. Cleared lysates were centrifuged at 140,000 x g for 1 h to separate the membrane and soluble fractions. After centrifugation, the pellet (total membrane fraction) was resuspended in 1 ml of Tris-NaCl, divided into aliquots, and stored at -80°C. Membrane fractions were examined by immunoblotting using polyclonal antibodies raised against PtlH (52) and PtlL (kindly provided by C. Locht).

Immunoblotting. The *B. pertussis* 18323 wt and Δhfq strains were cultivated in SS medium at 37°C, and cells from 1-ml aliquots were lysed and boiled in sample buffer. To analyze the supernatant fractions, 20-ml aliquots of cell-free supernatants were filtered through 0.22-μm pore-size filters and precipitated with 10% (wt/vol) trichloroacetic acid, and the precipitates were washed with 80% acetone, dissolved in sample buffer, and boiled. Samples with ODs equivalent to 0.1 OD_{600} unit (supernatants) or 0.1 OD_{600} unit (whole-cell lysates) were separated on SDS-polyacrylamide gels and analyzed by immunoblotting using anti-ACT antibody.

Western blot analysis revealed the presence of ACT activity of both the wt and Δhfq strains. Samples were taken at the early exponential (EE), late exponential (LE), early stationary (ES), and late stationary (LS) phases of growth. The percentage of secreted ACT was calculated as the ratio between the AC activity of the secreted toxin (the AC extractable from the bacterial cell surface in 4 M urea) plus the AC released into the supernatant fraction) and the total AC activity. Total AC activity in the sample (determined as described for panel B) was set equal to 100%. Bars represent the means ± standard deviations of three experiments.

Cell-associated and cell-invasive AC enzyme activities. The activities of ACT produced by the wt strain were taken as 100%. Bars represent the means ± standard deviations of three experiments.

Western blot analysis revealed the presence of ACT activity of both the wt and Δhfq strains. Samples were taken at the early exponential (EE), late exponential (LE), early stationary (ES), and late stationary (LS) phases of growth. The percentage of secreted ACT was calculated as the ratio between the AC activity of the secreted toxin (the AC extractable from the bacterial cell surface in 4 M urea) plus the AC released into the supernatant fraction) and the total AC activity. Total AC activity in the sample (determined as described for panel B) was set equal to 100%. Bars represent the means ± standard deviations of three experiments.

Cell-associated and cell-invasive AC enzyme activities. The activities of ACT produced by the wt strain were taken as 100%. Bars represent the means ± standard deviations of three experiments.
Macrophage infection assay. B. pertussis cells were suspended in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% bovine serum albumin, and RAW 264.7 murine macrophages were infected at a multiplicity of infection (MOI) of 10 bacteria per cell. Bacterial inocula were quantified by plating appropriate dilutions on BGA plates. After addition of bacteria, tissue culture plates were centrifuged for 5 min at 300 × g to facilitate bacterial interaction with macrophage cells. After 60 min of incubation at 37°C with 5% CO₂, nonadherent bacteria were removed by three washing steps in DMEM. Then, medium containing 100 µg/ml of polymyxin B sulfate was added for 60 min at 37°C with 5% CO₂ to kill extracellular bacteria. Next, infected macrophages were washed with fresh medium containing 30 µg/ml of polymyxin B sulfate and further incubated at 37°C with 5% CO₂. The number of viable intracellular bacteria was determined immediately after washing with fresh medium (2 h postinfection) and at 24 and 48 h postinfection. Infected macrophages were lysed with sterile water, and serial dilutions of lysates were rapidly spread on BGA plates, and colonies were counted to calculate the numbers of colony-forming units (CFU) per mouse.

Mouse infection. Four-week-old CD1 Swiss outbred mice were obtained from Charles River Laboratories and maintained under specific-pathogen-free conditions. B. pertussis 18323 strains were grown to exponential phase of growth at 37°C. On the next day, the OD₆₀₀ values of the cultures were measured and cells were resuspended in sterile phosphate-buffered saline (PBS; pH 7.4) to adjust the cells to the appropriate concentrations. Bacteria were administered intranasally in suspensions of 50 µl of PBS per mouse in pathogen-free conditions.

RESULTS

The B. pertussis hfq mutant is impaired in growth and production of ACT. To determine the impact of hfq gene deletion on B. pertussis physiology, we first compared the growth of the Δhfq mutant in SS medium at 37°C to that of parental strain 18323 (wt). As shown in Fig. 1A, the Δhfq strain grew slower (doubling time [Tₐ₅₀] ∼ 6 h) and reached a lower final optical density than the wt or the complemented Δhfq strain (Tₐ₅₀ ∼ 4 h) that carried the hfq gene on the pBRBhfq plasmid. To examine whether deletion of the hfq gene affected expression of important virulence factors of B. pertussis, we first analyzed the production of the adenylate cyclase (AC) toxin. Therefore, the amounts of the AC enzyme were determined in parallel by plating serial dilutions of challenge suspensions on BGACm plates. The competitive index (CI) was calculated by the following formula: (number of CFUout of Δhfq::Cmr/number of CFUout of wt) / (number of CFUin of Δhfq::Cmr/number of CFUin of wt) (54).

All animal experiments were approved by the Animal Welfare Committee of the Institute of Microbiology of the ASCR, v.v.i., in Prague, Czech Republic. Handling of the animals was performed according to the Guide for the Care and Use of Laboratory Animals (55); the Act of the Czech National Assembly, Collection of Laws No. 149/2004, inclusive of the amendments on the Protection of Animals against Cruelty; and the Public Notice of the Ministry of Agriculture of the Czech Republic, Collection of Laws No. 207/2004, on the care and use of experimental animals.

Statistical analysis. When appropriate, the Student t test (SigmaPlot, version 1; Systat Software Inc., CA) was used to compare the mean values between two groups. Differences were considered significant at P values of ≤0.05.

TABLE 1 PCR primers used for quantification of gene expression

<table>
<thead>
<tr>
<th>Protein</th>
<th>Gene</th>
<th>Orientation¹</th>
<th>Oligonucleotide sequence (5’–3’)</th>
<th>Amplicon size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemolysin-adenylate cyclase</td>
<td>cyaA</td>
<td>F</td>
<td>CGAGGGCGGTCAAGGTGAT</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>GCGGAAAGTGGACAGATGC</td>
<td></td>
</tr>
<tr>
<td>Virulence factor transcription regulator</td>
<td>bgaA</td>
<td>F</td>
<td>AGGTATCATGAATGCGGCA</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>GCAGAGCGTCAGTCTGGC</td>
<td></td>
</tr>
<tr>
<td>Filamentous hemagglutinin</td>
<td>fhaB</td>
<td>F</td>
<td>CAAGGCCGCAAGGTA</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>ACAGGATGGCGAAGGGCT</td>
<td></td>
</tr>
<tr>
<td>RNA polymerase subunit beta</td>
<td>rpoB</td>
<td>F</td>
<td>GCTGGACCGGAGAAAT</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>GCAGAAATGAAGGATGTC</td>
<td></td>
</tr>
<tr>
<td>Pertussis toxin subunit I</td>
<td>ptxA</td>
<td>F</td>
<td>CCGAGAAGGGTCAGC</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>CTGTCGCTTGTTGAGGAGCA</td>
<td></td>
</tr>
<tr>
<td>Pertussis toxin transport protein A</td>
<td>pelA</td>
<td>F</td>
<td>CCCCCGAGGGTGAGCA</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>GCGCGGCAAGTGCAGCA</td>
<td></td>
</tr>
<tr>
<td>Pertussis toxin transport protein F</td>
<td>pelF</td>
<td>F</td>
<td>TGGTCGCTGATATCAAGGGCCAAAT</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>GTTTTGACGAGCAGATTGTG</td>
<td></td>
</tr>
<tr>
<td>Pertussis toxin transport protein G</td>
<td>pelG</td>
<td>F</td>
<td>CACGGTTACGTTGCGATCTGT</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>GTATTGGGCCACCCAGCTG</td>
<td></td>
</tr>
<tr>
<td>Pertussis toxin transport protein H</td>
<td>pelH</td>
<td>F</td>
<td>ATATAGCGGAATCTGGCGTGA</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>GCGAAATGTCGGGGTGC</td>
<td></td>
</tr>
</tbody>
</table>

¹ F, forward primer; R, reverse primer.
mutant produced significantly smaller total amounts of ACT (Fig. 1B) and it also released much less ACT into the culture supernatants (Fig. 1C) than the wt or the complemented strain. The amounts of cell-associated ACT detected by immunoblot analysis of whole-cell lysates then paralleled well the total amounts of cell-associated ACT detected by immunoblot analysis using anti-ACT, anti-PTS1, anti-FHA, and anti-BvgA antibodies. Relevant parts of the membrane are shown. (C) RT-qPCR analysis of ptaA, cyaA, fhaB, and bvgA transcript levels in wt and Δhfq bacteria. Total RNA was isolated from cells grown to late exponential (exp) and late stationary (stat) phases of growth. Samples equivalent to 0.1 OD600 units (pellets) or 1 OD600 unit (supernatants) of the initial culture were analyzed by immunoblotting using anti-ACT, anti-PTS1, anti-FHA, and anti-BvgA antibodies. Relevant parts of the membrane are shown. (D) Western blot analysis of pertussis toxin (PTS1 subunit), FHA, and BvgA protein levels in both wt and Δhfq strains. Samples were taken at early exponential (EE), late exponential (LE), early stationary (ES), and late stationary (LS) phases of growth. Samples equivalent to 0.1 OD600 units (pellets) or 1 OD600 unit (supernatants) of the initial culture were analyzed by immunoblotting using anti-PTS1 antibodies. Relevant parts of the membrane are shown. (E) Composition of membrane fractions of the wt and Δhfq strains (top) and Western blot analysis of PtlH and PtlI protein levels (middle and bottom). Samples of total membrane fractions (10 µg per lane) isolated from wt and Δhfq cells grown to late exponential or late stationary phases were loaded in duplicate onto SDS-polyacrylamide gels and either stained with Coomassie brilliant blue (top) or transferred onto a nitrocellulose membrane. Membranes were probed with anti-PtlH and anti-PtlI antibodies (middle and bottom; the relevant parts of the membrane are shown). Asterisks, major differences in membrane protein composition between wt and Δhfq samples. The positions of molecular size markers are indicated in the lane on the left.
higher than those detected in whole-cell lysates of the parental strain. In culture supernatants (row S), however, lower PT$_{10}$ levels were observed, suggesting that the capacity of the Δhfq strain to secrete the toxin across the outer bacterial membrane was affected. This defect was hfq specific, as PT secretion was fully restored in the complemented Δhfq mutant (Fig. 2B).

Similar to PT secretion, FHA secretion was also altered in the Δhfq strain. When grown to exponential phase, the mutant released smaller amounts of FHA into the culture supernatants than the wt strain and the FHA produced accumulated in association with Δhfq cells (Fig. 2A). In the stationary phase, however, the levels of cell-associated and secreted FHA were comparable for both strains.

To analyze in more detail the potential differences in expression of the virulence factor genes between the wt and the Δhfq strains, total RNA was purified from bacterial cells grown to exponential and stationary phases and the relative levels of cyaA, ptxA, and fhaB mRNAs (encoding ACT, PT$_{51}$, and FHA, respectively) were analyzed by quantitative PCR (RT-qPCR). As shown in Fig. 2C, similar relative levels of cyaA gene expression were observed for the wt and the Δhfq strain, thus suggesting that posttranscriptional regulation may be accounting for the reduction of ACT production by the Δhfq strain (Fig. 1). Interestingly, in the stationary phase of growth, the relative amount of the ptxA transcript was even increased in the Δhfq strain, which was in good agreement with the increased levels of the PT$_{51}$ protein in extracts of the Δhfq cells. The relative levels of the fhaB transcript, then, did not differ importantly between the strains. To assess whether alteration of bvgAS expression might have accounted for the decrease of ACT production and decreased secretion of PT and FHA, the bvgA mRNA level and the level of BvgA protein production were examined. As shown in Fig. 2C and A, however, the levels of these proteins did not markedly differ between the wt and the Δhfq strain.

To corroborate these observations, we examined whether the decreased secretion of PT by the Δhfq strain could be due to altered expression of the ptl genes. Secretion of PT across the outer bacterial membrane depends on the function of a dedicated type IV transport system that is encoded by nine ptl genes located directly downstream of the ptx genes within a single ptx-ptl operon (58, 59). Therefore, we quantified by RT-qPCR the transcription levels of the ptlA, ptlB, ptlG, and ptlH genes, which are located at the 5′ and 3′ ends of the multicistronic ptl transcript. As shown in Fig. 2D, however, similar to ptxA, the relative expression level of the ptl genes was also increased severalfold in the hfq mutant. Nevertheless, this did not translate into increased Ptx protein incorporation into the bacterial cell envelope, since similar amounts of the PtlH and PtlI proteins were detected in total membrane fractions of the Δhfq and wt bacteria by Western blotting (Fig. 2E).

As further indicated by asterisks in Fig. 2E, some differences in the protein compositions of the membrane fractions of the Δhfq and wt bacteria were already observed upon a simple one-dimensional SDS-PAGE analysis. This suggests that alterations of PT and FHA secretion may have been due, at least in part, to unspecific alterations of the cell envelope composition/functionality in the Δhfq bacteria.

The Δhfq strain is significantly attenuated in virulence. Manipulation of cAMP signaling in immune cells by the AC toxin results in inhibition of the chemotactic, phagocytic, and oxidative burst capacities of host phagocytes and thereby contributes to the persistence of B. pertussis in the host (37, 57). Since the Δhfq strain produced smaller amounts of AC toxin, we predicted that its capacity to persist within immune cells could be compromised. Therefore, the intracellular survival of wt and Δhfq bacteria in RAW 264.7 macrophages was compared. As shown in Fig. 3, the relative survival capacity of the hfq mutant in macrophages was, indeed, significantly affected. Compared to the wt or the complemented strain, about 2-fold lower numbers of viable Δhfq bacteria were recovered from macrophages at 2 h postinfection. The difference was even more pronounced at later time points, and in contrast to the results for the wt strain, no viable Δhfq bacteria could be recovered from macrophage cells at 48 h postinfection. The numbers of complemented Δhfq bacteria recovered at 2, 24, and 48 h postinfection did not differ statistically significantly from the numbers determined for the wt strain. It can, hence, be concluded that Hfq is required for expression of factors involved in the intracellular persistence of B. pertussis in macrophages in vitro.

To analyze the impact of hfq deletion on B. pertussis virulence in vivo, the mouse intranasal infection model was used. As shown in Fig. 4A, while administration of 1.5 × 106 CFU/mouse of the wt bacteria caused the death of all inoculated mice within 4 days, no lethality was observed with the same dose of Δhfq bacteria, which caused a comparably lethal infection only at a 10-fold increased challenge dose (1.5 × 105 CFU/mouse). When the doses causing the death of 50% of the infected animals (LD$_{50}$) were calculated from several infection experiments, values of 6 × 107, 7 × 107, and 8 × 106 CFU/mouse were found for the wt, the complemented, and the Δhfq strains, respectively. Clearly, a lack of Hfq function resulted in an important reduction of B. pertussis virulence.

Therefore, the capacity of the Δhfq strain to colonize the lungs of mice infected with sublethal doses of 2 × 107 CFU/mouse was assessed. As illustrated in Fig. 4B, at this inoculation dose, the wt
To determine whether the \(<hfq\) mutation affects virulence in mice, we performed competitive infection experiments. Mice were infected intranasally with doses of \(1.5 \times 10^6\) CFU/mouse of the wt strain and with either \(1.5 \times 10^6\) or \(1.5 \times 10^5\) CFU/mouse of the \(<hfq\) strain. Mortality was recorded daily for 7 days. Results are representative of three experiments. (B) Colonization of mouse lungs after intranasal challenge with the wt or \(<hfq\) strain. For each strain, 15 mice were infected intranasally with \(2 \times 10^5\) CFU/mouse and groups of three animals were sacrificed at 2 h (day 0) and 5, 8, 14, and 21 days after infection. Lung homogenates were plated in duplicate on BGA and BGACm plates, and the numbers of CFU of the wt and \(<hfq\) strains were counted. The values are means \(\pm\) standard deviations. \(*\), \(P < 0.02\) for the \(<hfq\) strain versus the wt strain; **, \(P < 0.001\) for the \(<hfq\) strain versus the wt strain. Results are representative of three experiments. (C) Colonization of mouse lungs during mixed infection of mice. Eighteen mice were challenged intranasally with a 1:1 mixture of the two strains (\(1 \times 10^5\) CFU/mouse of each strain), and groups of three animals were sacrificed at 2 h (day 0) and 5, 8, 15, and 21 days after infection. Lung homogenates were plated in duplicate on BGA and BGACm plates, and the numbers of CFU of the wt and \(<hfq\):Cm\(^{\prime}\) strains were counted. The values are means \(\pm\) standard deviations. \(*\), \(P < 0.005\) for the \(<hfq\) strain versus the wt strain in mixed culture; **, \(P < 0.001\) for the \(<hfq\) strain versus the wt strain in mixed culture. Results are representative of two experiments. Dashed lines, limit of detection.

The \(<hfq\) strain is outcompeted in mixed-infection experiments. To determine whether the \(<hfq\) strain was at a competitive disadvantage when coinfected mice together with the wt strain, we performed competitive infection experiments. Mice were infected intranasally with a sublethal dose of a 1:1 mixture of wt and \(<hfq\) bacteria (\(1 \times 10^5\) CFU/mouse of each strain). In order to distinguish viable wt and \(<hfq\) cells recovered from lungs, an isogenic \(<hfq\) mutant carrying a chloramphenicol resistance cassette \(<hfq\):Cm\(^{\prime}\) was used here. As a parallel noncompetitive condition control, both wt and \(<hfq\):Cm\(^{\prime}\) strains were also administered separately (data not shown). As shown in Fig. 4D, in a mixed-infection experiment, the wt strain colonized lungs at levels which were significantly higher than those reached by the \(<hfq\):Cm\(^{\prime}\) mutant. Similar to the findings for the single-strain infection (Fig. 4B and C), the wt bacteria exhibited a typical initial rise in numbers of CFU, peaking at days 5 and 8, while at between days 8 and 21, the wt bacteria were progressively cleared from the lungs. In contrast, the \(<hfq\) bacteria already began to be cleared from day 0 in the mixed-infection experiment, and \(<hfq\) cells were completely eliminated from mouse lungs by day 12. As expected, how-
ever, in the single-strain infection, the \(\Delta \text{hfq}\) strain produced 5-fold lower amounts of the AC toxin. The AC toxin, however, exhibited the same specific activity in binding and penetration of red blood cells as the toxin produced by the wt strain. Hence, the ACT produced by the \(\Delta \text{hfq}\) strain appeared to be properly activated through posttranslational palmitoylation by the CyaC expressed from the cyaA locus (62, 63). Moreover, the fraction (in percent) of the total amount of AC toxin produced that was secreted out of the bacterial cytosol to the outer bacterial surface and to the culture supernatants was similar to that of the parental strain (65). Hence, integrity of the outer membrane of the \(B. \ pertussis \) strain was not as importantly compromised, as previously reported for the \(\text{hfq} \) mutant of a uropathogenic \(E. \ coli \) strain (63).

Besides impacting the growth rate, deletion of the \(\text{hfq} \) gene resulted in reduced production of both the adenylate cyclase toxin and the pertussis toxin, which are required for the efficient and antimicrobial compound polymyxin B was observed between wt and \(\Delta \text{hfq} \) cells (data not shown). Hence, the integrity of the outer membrane of the \(B. \ pertussis \) \(\Delta \text{hfq} \) strain was not as importantly compromised, as previously reported for the \(\text{hfq} \) mutant of a uropathogenic \(E. \ coli \) strain (65).

Not surprisingly, the reduced growth rate and altered production and secretion of such central virulence factors like ACT, PT, and FHA resulted in a decrease of virulence of the \(\Delta \text{hfq} \) strain in the \textit{in vivo} challenge model of intranasal mouse infection. The \(\text{hfq} \) mutant was affected both in its capacity to cause a lethal infection (\(LD_{50} \)) and in its ability to efficiently multiply and persist in mouse lungs. The \(LD_{50} \) value for the \(\Delta \text{hfq} \) strain was about 10-fold higher than that of the parental strain or of the complemented strain. This result is consistent with the previous observations obtained with \(\Delta \text{cyaA} \) strains of the Tohama I and 18323 strains, which also exhibited a colonization defect in mice (67, 68). Importantly, the

DISCUSSION

We show here that the RNA chaperone Hfq is required for full expression of \(B. \ pertussis \) virulence and persistence in \textit{in vitro} and \textit{in vivo} models of infection. This indicates that expression of at least some of the virulence genes of \(B. \ pertussis \) might involve regulatory sRNA that depends on the function of Hfq.

In agreement with the phenotypes of the \(\Delta \text{hfq} \) derivatives of other bacteria (15, 25), the \(B. \ pertussis \) 18323 \(\text{hfq} \) mutant was moderately impaired in growth, exhibited a longer replication time, and reached a lower final culture density than the parental strain. This phenotype was expected, as pleiotropic effects of deletion of the \(\text{hfq} \) gene on the physiology of Gram-negative bacteria were previously reported (15, 21). Furthermore, Hfq was also previously implicated in the regulation of toxin production in several pathogenic bacteria (24, 60, 61). In line with this, we observed that Hfq function was required for the production and/or secretion of several key virulence factors of \(B. \ pertussis \), such as the adenylate cyclase toxin, the pertussis toxin, and the filamentous hemagglutinin.

Compared to the parental strain on a per bacterial cell basis, the \(\Delta \text{hfq} \) strain produced about 5-fold lower total amounts of the AC toxin. The AC toxin, however, exhibited the same specific activity in binding and penetration of red blood cells as the toxin produced by the wt strain. Hence, the ACT produced by the \(\Delta \text{hfq} \) strain appeared to be properly activated through posttranslational palmitoylation by the CyaC expressed from the cyaA locus (62, 63). Moreover, the fraction (in percent) of the total amount of AC toxin produced that was secreted out of the bacterial cytosol to the outer bacterial surface and to the culture supernatants was similar for the parental and the \(\Delta \text{hfq} \) strain. The decreased production of ACT was not due to a reduced transcription of the cyaA gene, since normal levels of the \(\text{cyaA} \) transcript were detected in \(\Delta \text{hfq} \) cells (Fig. 2C) and the levels of transcription of the cyaABDE genes were also comparable for both the \(\Delta \text{hfq} \) and the wt strains (data not shown). It appears that the decrease of ACT secretion by the \(\text{hfq} \) mutant was primarily due to a reduction in the level of ACT protein synthesis. The possibility that the ACT protein may have been produced at a normal rate in \(\Delta \text{hfq} \) cells and was rapidly turned over intracellularly remains to be excluded. More plausibly, however, these results indicate that translation of cyaA mRNA may be subject to posttranscriptional regulation dependent on the function of the RNA chaperone Hfq, such as riboregulation by an Hfq-dependent sRNA.

A somewhat different picture was observed for production and secretion of PT and FHA. Secretion of FHA was reduced in the \(\Delta \text{hfq} \) strain, albeit only in the exponential phase, while expression of the \(\text{fhaB} \) gene was not affected. The \(\Delta \text{hfq} \) strain was then found to secrete smaller amounts of PT\(_{S1}\) into culture supernatants than the parental strain, suggesting that secretion of PT was affected in the \(\text{hfq} \) mutant. This, however, was not due to reduced expression of the \(\text{ptx-ctl} \) operon. Expression of the \(\text{ptxA} \) gene encoding the S1 subunit of PT (PT\(_{S1}\)) was found to be increased, and increased amounts of the PT\(_{S1}\) protein accumulated in \(\Delta \text{hfq} \) cells. Similarly, expression of the \(\text{ptl} \) genes, encoding proteins involved in secretion of pertussis toxin, was elevated in the \(\text{hfq} \) mutant, while the levels of PtlH, a transport protein with ATPase activity (52), were comparable in both the \(\Delta \text{hfq} \) and the parental strains. Since the levels and membrane localization of the PtlH protein depend on the presence and localization of the PtdL, PtdE, PtdF, and PtdG proteins (52), it is plausible to assume that the levels of all of the Ptl proteins produced were similar for the \(\text{hfq} \) mutant and the parental strain. These results indicate that the observed reduction of PT secretion by the \(\Delta \text{hfq} \) strain was not due to a problem in expression of the type IV translocator of PT but, rather, that it was due to a more general alteration of cell envelope composition and function in the \(\Delta \text{hfq} \) bacteria. Similarly, secretion of FHA was reduced in the \(\Delta \text{hfq} \) strain as well; however, it was reduced only in the exponential phase (Fig. 2A), while there was no difference in expression of the corresponding gene, \(\text{fhaB} \) (Fig. 2C). Since the expression of virulence factors is under the control of the BvgAS two-component system, both the protein and transcript levels of the transcriptional regulator BvgA and its structural gene were analyzed as well. Compared to the wt strain, neither protein nor relative transcript levels were significantly changed in the \(\text{hfq} \) mutant (Fig. 2A and C). Although we did not analyze the phosphorylated form of BvgA, which is the only active form, we believe that the observed effects are linked to \(\text{hfq} \).

Loss of Hfq was, indeed, previously reported to induce cell envelope stress and was shown to affect membrane homeostasis in several pathogenic bacteria (23, 27, 64). In line with that, we also observed differences in the protein compositions of membranes from wt and \(\Delta \text{hfq} \) bacteria (Fig. 2E). On the other hand, no difference in sensitivity to the membrane-disrupting activity of the antimicrobial compound polymyxin B was observed between wt and \(\Delta \text{hfq} \) cells (data not shown). Hence, the integrity of the outer membrane of the \(B. \ pertussis \) \(\Delta \text{hfq} \) strain was not as importantly compromised, as previously reported for the \(\text{hfq} \) mutant of a uropathogenic \(E. \ coli \) strain (65).

The observed effects are linked to \(\text{hfq} \). Not surprisingly, the reduced growth rate and altered production and secretion of such central virulence factors like ACT, PT, and FHA resulted in a decrease of virulence of the \(\Delta \text{hfq} \) strain in the \textit{in vivo} challenge model of intranasal mouse infection. The \(\text{hfq} \) mutant was affected both in its capacity to cause a lethal infection (\(LD_{50} \)) and in its ability to efficiently multiply and persist in mouse lungs. The \(LD_{50} \) value for the \(\Delta \text{hfq} \) strain was about 10-fold higher than that of the parental strain or of the complemented strain. This result is consistent with the previous observations obtained with \(\Delta \text{cyaA} \) strains of the Tohama I and 18323 strains, which also exhibited a colonization defect in mice (67, 68). Importantly, the
impairment of proliferation of the Δhfq strain in mouse lungs was not primarily due to slower growth of the mutant, since it could not be compensated for by a 10-fold increased infection dose (Fig. 4C), and even a 100-fold increase of the infection dose did not allow the colonization deficiency of the Δhfq strain to be overcome (data not shown).

Previous mixed-infection experiments demonstrated that in contrast to PT, which acts as a soluble factor benefiting the whole infecting bacterial population (69), ACT acts more as a cell-associated factor that benefits only the cells that produce it, and therefore, cells lacking ACT have been outcompeted in mixed infections (68). Therefore, we have asked whether the Δhfq strain would also show a competitive disadvantage in a mixed-infection experiment. The Δhfq mutant of B. pertussis exhibited, indeed, a striking colonization defect, when used in coinfection experiments with the wt strain. In contrast to single-strain infections, where Δhfq bacteria could be detected in lungs until day 21, in the mixed infection, the Δhfq strain was outcompeted by wt bacteria and was already completely eliminated from mouse lungs by day 12. The competitive index (CI) is considered a sensitive measure with which to assay virulence attenuation (54, 70). CI indexes calculated at days 5 and 8 postinfection were found to be only 0.003 and 0.001, respectively, which were values very similar to those obtained in mixed infections with wt and Δhfq strains of Y. pestis and S. Typhimurium (23, 25).

To conclude, the results reported here clearly point toward the requirement for Hfq function in posttranscriptional regulation of B. pertussis virulence. It will, hence, be of interest to use the Δhfq strain characterized here to unravel the sRNA-mediated regulation of B. pertussis virulence genes by employing genome-wide expression analysis methods, such as DNA microarray analysis and high-throughput sequencing.

ACKNOWLEDGMENTS

We thank H. Lukeová for excellent technical help and I. Držmíšek for help with gene cloning. The kind gifts of antibodies by Nicolle Guiso (Institute Pasteur, Paris, France), Drusilla Burns (FDA, Bethesda, MD), Camille Locht (Pasteur Institute, Lille, France), and Kristina Keidel (Julius Maximilian University, Würzburg, Germany), as well as advice on the use of the pSS4245 plasmid and the helpful discussions with Scott Stibitz (FDA, Bethesda, MD), are gratefully acknowledged.

This work was supported by grants P302/11/9490 (to B.V.) and P302/12/0460 (to J.M.) from the Czech Science Foundation (www.gacr.cz) and by funding from RVO61388971.

J.B. and K.S. are doctoral students of the Institute of Chemical Technology in Prague, Czech Republic, and O.C. is a doctoral student of the Faculty of Science of the Charles University in Prague, Czech Republic.

REFERENCES

The RNA Chaperone Hfq Is Required for Virulence of *Bordetella pertussis*

Ilona Bibova, Karolina Skopova, Jiri Masin, Ondrej Cerny, David Hot, Peter Sebo, Branislav Vecerek

Institute of Microbiology, ASCR, v.v.i., Prague, Czech Republic; Laboratoire Transcriptomique et Genomique Appliquee, Institut Pasteur de Lille, Lille, France

We recently became aware that since 2008, our laboratory has used a *Bordetella pertussis* strain that was erroneously labeled and referred to in this publication as *Bordetella pertussis* 18323. Single nucleotide polymorphism analysis and determination of the draft genome sequence of the strain performed by Dr. Harris at the Sanger Institute revealed that we have been working with the *B. pertussis* Tohama I strain. The genome sequence data for this strain (assembled sequence contigs) from the study named “Sequencing Czech *Bordetella pertussis* wP vaccine strains” can be downloaded from the ENA under study accession number ERP003836, using the following link: http://www.ebi.ac.uk/ena/data/view/SAMEA2177726.

In all future experiments and publications, we will refer to this strain as “*B. pertussis* Tohama I.” We sincerely apologize to all colleagues for any confusion that may have arisen from the unfortunate error that, however, has no effect whatsoever on the validity of the published data obtained with a reference *B. pertussis* strain and mutants derived thereof.

Copyright © 2014, American Society for Microbiology. All Rights Reserved.
doi:10.1128/IAI.01944-14