Trypanosoma cruzi promotes neuronal and glial cell survival through the neurotrophic receptor TrkC

Craig Weinkauf and Mercio Pereira-Perrin

Parasitology Research Center, Department of Pathology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, Massachusetts 02111;

Correspondence: Mercio Pereira-Perrin, Parasitology Research Center, Department of Pathology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, Massachusetts 02111 Email: Mercio.perrin@tufts.edu

Running title: Trypanosoma cruzi activates neuroprotective TrkC signaling

Keywords: Trypanosoma cruzi; Chagas’ disease; neurotrophic receptor TrkC; neurotrophin-3; nervous system; Schwann cells
Abstract

Trypanosoma cruzi, the agent of Chagas’ disease, promotes neuron survival through receptor tyrosine kinase TrkA and GPI-anchored glial cell-derived family ligand receptors (GFRα). However, these receptors are expressed by only a subset of neurons and at low levels or not at all in glial cells. Thus, *T. cruzi* might exploit additional neurotrophic receptor(s) to maximize host/parasite equilibrium in the nervous system. We show here that *T. cruzi* binds TrkC, a neurotrophic receptor expressed by glial cells and many types of neurons, and that the binding is specifically inhibited by neurotrophin-3 (NT-3), the natural TrkC ligand. Co-immunoprecipitation and competition assays show that the trans-sialidase/parasite-derived neurotrophic factor (PDNF), previously identified as a TrkA ligand, mediates the *T. cruzi*/TrkC interaction. PDNF promotes TrkC-dependent MAPK signaling, neurite outgrowth, and survival of genetically engineered PC12 neuronal cells and glial Schwann cells in a TrkC-dependent manner. Thus, TrkC is a new neurotrophic receptor that *T. cruzi* engages to promote the survival of neuronal and glial cells. The results raise the possibility that *T. cruzi* recognition of TrkC underlies regenerative events in nervous tissues of patients with Chagas’ disease.
Introduction

Trypanosoma cruzi causes Chagas’ disease, a chronic, incurable debilitating condition widespread in Latin America and increasingly prevalent in the United States (1, 19). T. cruzi preferentially invades Schwann cells and enteric glial cells in the peripheral nervous system (PNS) (45) and astrocytes in the central nervous system (CNS) (15). T. cruzi also invades neurons in both the PNS and CNS (38, 40). The interaction of T. cruzi with the nervous system may trigger cell survival mechanisms, as judged by nerve tissue regenerative events in patients in the chronic indeterminate phase of Chagas’ disease (16, 17, 25). For example, although the number of neurons in chagasic patients is lower than age-matched normal individuals, the average number of neurons in both cardiac and GI ganglia actually increases with the age of patients, contrary to age-related physiological reduction in non-chagasic individuals (25). Furthermore, T. cruzi infects the CNS where the parasites are found in the spinal fluid of patients with acute Chagas’ disease (22), yet T. cruzi invasion of the CNS produces few, if any, symptoms and pathology unless patients are co-infected with HIV or undergo treatment with immunosuppressants (13, 37). Animals infected with T. cruzi also present evidence of neuroregeneration such as neurite outgrowth and absence of neurodegeneration in T. cruzi-infected foci in the brain (30, 32, 33).

Host cell protection against injury could confer obvious benefits to an obligate intracellular parasite like T. cruzi. Although host responses likely underlie tissue repair mechanisms, increasing evidence suggests that T. cruzi may play a direct role in enhancing cell survival (7, 8). Similar to the activation of TrkA receptor by nerve growth factor (NGF), T. cruzi binds TrkA and activates mitogen-activated protein kinase (MAPK), phosphatidyl inositol 3-kinase (PI3K) and Akt kinase signaling pathways (9, 11, 12). T. cruzi recognition of TrkA is via the neuraminidase/trans-sialidase, also called parasite-derived neurotrophic factor (PDNF) (7, 8). Activation of these
TrkA-dependent signaling pathways leads to the survival of neurons and other TrkA-expressing cell types subjected to various insults such as infection and starvation (11, 12). Thus, PDNF may be one of the factors that may mitigate host nerve tissue damage.

TrkA is a member of the tyrosine kinase Trk receptor family, which also includes receptors TrkB and TrkC. Trk signaling helps mediate the differentiation, continued survival and the regeneration of cells throughout the central and peripheral nervous systems (24). Despite a 60-80% homology, Trk receptors have preferred ligands, called neurotrophins, a distinct pattern of expression, and non-redundant functions. For example, the preferred ligands for TrkA and TrkB are NGF and brain-derived nerve growth factor (BDNF), respectively, which do not bind TrkC. TrkC is recognized only by neurotrophin-3 (NT-3), yet NT-3 is the most promiscuous of the neurotrophins, as it binds TrkA and TrkB, albeit with $10^2 - 10^4$ lower affinity (24). Binding of NT-3 to each Trk receptor with varying affinities may activate signaling pathways differentially (27). However, it is not clear whether low affinity binding to non-preferred receptors is relevant in vivo, as the decreased binding affinity of NT-3 to TrkB may be magnified in vivo, resulting in selective signaling through TrkC, not TrkB (44). The divergence in Trk family receptors can also be seen by examining cell-specific Trk expression, as any given neuron or glial cell often expresses only one Trk receptor type. Defined segments of the nervous system often depend on a specific Trk receptor for differentiation and continued survival (6, 24).

Some nerve tissues highly parasitized by *T. cruzi* such as those in the heart and GI tract depend on the expression of TrkC, but not of TrkA or TrkB (6, 24). It also depends on the expression of receptors for glial cell-derived family ligands (GFRα and Ret) (2, 4). The tissue specificity of Trk receptors, GFRα, and Ret raises the possibility of *T. cruzi* optimizing its interactions with cells throughout the mammalian nervous system by binding multiple neurotrophic receptors. For example, Schwann cells, which myelinate neurons in the PNS and express TrkB and TrkC but not TrkA and GFRα (50), undergoes regeneration in animal models of Chagas’ disease (34).
Although *T. cruzi* activates TrkA (11) and GFRα (31) pro-survival signalings, alternative mechanism(s) must be employed if *T. cruzi* is to promote the maintenance of parasitized cells that do not express TrkA and GFRα receptors. In ways that mimic, yet that are distinct from the endogenous actions of NT-3, we show here that *T. cruzi* mediates neuronal and Schwann cell survival through the binding and activation of neurotrophic receptor TrkC.
Materials and Methods

Parasites and Cell Lines

T. cruzi trypomastigotes (Silvio X-10/4 strain) were propagated in Vero cell cultures (11).

PC12^{nrr5} cells were gifts from Dr. Lloyd Green (College of Physicians and Surgeons, Columbia University, NY). Trk receptor-deficient PC12 cell mutant NNR5 (20) was cultured in DMEM (Gibco) supplemented with 10% FBS (Gemini Bio Products), 100u/ml pen/strep (Gibco), 2mM L-Glutamine (Gibco), 1X non-essential amino acids (Gibco) and 1mM sodium pyruvate (Gibco).

Human Schwann cells (permanent cell line) (7), were maintained in DMEM supplemented with 10% FBS (Gemini Bio Products) and 100u/ml pen/strep (Gibco).

Cloning and Transfection

TrkB and TrkC were directionally cloned from human RNA (RNA was a gift from Tugba Bagci, Tufts University, Neuroscience department, Tufts Medical School) via RT-PCR into the pIRES-dsRed mammalian expression vector (Clontech). TrkC was amplified using the forward primer 5’CCGCTCGAGATGGATGTCTCTCTTT (incorporating Xho I site, underlined) and the reverse primer 5’CTAGCCAAGAATGTCCAGGTAGATTG. The PCR product was ligated into Topo® vector (Invitrogen) and excised and re-ligated into the pIRES vector using Xho I and EcoRI sites. A similar cloning strategy was employed for TrkB using 5’CCGCTCGAGATGTCCAGGTAGACCG and 5’CTAGCCTAGAATGTCCAGGTAGACCG as forward and reverse primers, respectively.

NNR5 cells were transfected with TrkB, TrkC, or empty vector (EV) clones using Fugene HD (Roche) according to product protocol. Transfected cells were selected for in NNR5 medium supplemented with 500 µg/mL Geneticin (selective medium) (Gibco) for one week and then sorted by FACS for dsRed expression at one week and one month post-transfection. Cells were re-grown in selective medium and sorted a third time (by FACS) to obtain cell populations with homogenous expression levels of transfected receptors.
PDNF purification

Full-length PDNF was isolated from *T. cruzi* cultures by immuno-affinity chromatography as before (43).

T. cruzi binding assay

The extracellular domain of TrkA, TrkB, TrkC, and FGFR bound to immunoglobulin Fc domain were purchased from R&D systems, as was TrkC without Fc domain. Binding experiments were performed as described before (18): trypomastigotes (5 X 10^6/ml) were incubated with each receptor in binding buffer (DMEM, 0.1% BSA) for 45 minutes at 4°C, washed four times with binding buffer by centrifugation (6,000 x g, 5 min) to remove unbound receptor. Parasite pellets were resuspended in reducing (2% β-mercaptoethanol) SDS-Laemmli sample buffer, run on SDS-PAGE gel (7.5%), transferred to nitrocellulose and probed with anti-human IgG HRP-labeled antibody (Promega); blots were quantified in a scanning densitometer (Bio-Rad Laboratories). Blots were stripped and re-probed using human chagasic serum or TCN-2 monoclonal antibody to evaluate loaded parasite and the effect of washing of the parasites. Similar procedures were performed for *T. cruzi*/TrkC competitive binding experiments except NT-3, BDNF, NGF (Chemicon) or PDNF was co-incubated with *T. cruzi* and TrkC.

Co-immunoprecipitation assay

This was performed by a slight modification of a co-immunoprecipitation procedure (31): PDNF (1µg) was incubated overnight at 4°C with Fc-receptors (1µg) in binding buffer (DMEM, 0.1% BSA) Fc-receptors were immunoprecipitated on protein G-Sepharose (GE Healthsciences), washed 3X in binding buffer. Pellet was resuspended in SDS-sample buffer, run on reducing (2% β-mercaptoethanol) SDS-PAGE (7.5%), and transferred to nitrocellulose. PDNF co-immunoprecipitated by the Fc-receptors was identified with PDNF-specific monoclonal antibody
TCN-2 and anti-mouse-HRP secondary antibodies. Receptors were evaluated using anti-human IgG-HRP antibodies.

Trk signaling evaluation

a) Neurite Extension

Transfected NNR5 cells were plated in 96-well plates (10^4 cells/well) and treated with NT-3 or BDNF (100 ng/mL) or PDNF (250 ng/mL) in 10% FCS/DMEM for 48-72 hrs. Cells were fixed in 4% paraformaldehyde, blocked in 5% BSA/PBS, and probed with anti-neurofilament 200 (Sigma-Aldrich) followed by Alexa 488-conjugated anti-rabbit IgG (Molecular Probes). Cells were imaged (20X) by fluorescence microscopy (Olympus IX70). Using SPOT Advanced Software, a minimum of 50 cells for each condition was analyzed for neurite length. All cells with at least one neurite greater in length than 100% of its cell body width were counted as being a cell with a neurite.

b) Erk phosphorylation

Sub-confluent transfected NNR5 cells were plated in regular medium for one day and then cultured in serum free DMEM medium overnight. Cultures were then treated with NT-3 or BDNF (100 ng/mL) or PDNF (25-200 ng/mL) for 12 minutes. When indicated, cells were pre-treated with the Trk-specific inhibitor K252a (1 µM) (Sigma-Aldrich) for 60 min. Cells were immediately washed with cold PBS and lysed on ice with 1% NP-40 lysis buffer (20 mM Tris, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM glycerophosphate, 1 mM Na3VO4, 1 µg/mL leupeptin and 1 mM PMSF) for 30 min. Lysates were cleared by centrifugation at 10,000 x g for 10 min, and equal amounts of total protein (20-60 µg) in SDS-loading buffer were run under reducing conditions on a SDS-PAGE gel (12.5%), transferred to nitrocellulose, and probed with antibodies specific for phospho-Erk (Cell Signaling) and Erk1/2 kinase (Cell Signaling). To determine whether *T. cruzi* activates...
Erk1/2, NNR5 transfectants were infected with trypomastigotes (10^7/mL) for 15 min, and P-Erk ascertained as described above for PDNF cell activation.

NNR5 survival assay

Transfected NNR5 cells were plated in 96 well plates (10^4 cells/well), attached overnight in 10% FCS/DMEM, and grown in 1% FCS/DMEM, serum-free DMEM, or serum-free DMEM supplemented with 250 ng/mL PDNF for 72 hours. Cultures were then treated with Hoechst 33342 (10 µg/mL) and propidium iodide (PI) (2 µg/mL) in pre-warmed (37°C) DMEM for 10 minutes at 37°C, and visualized under ultraviolet light (340–380 nm). Hoechst 33342 stains live and apoptotic nuclei blue and PI stains only dead cells (pink).

Schwann cell survival assay

Schwann cells were plated in 96 well plates (5 x 10^3 cells/well) and allowed to attach overnight to the substratum in 10% FCS/DMEM and then washed twice in serum-free DMEM. Cells were then maintained in serum-free DMEM for three days with daily 1-hour treatments of FCS (1%) or serum-free DMEM with or without TrkC-specific antibodies (1 mg/ml) (Upstate Biotech), TrkB-specific antibodies (1 mg/ml) (Upstate Biotech), or PDNF (250 ng/ml) with or without the Trk antibodies. Cells were then stained with Hoechst 33342/PI and imaged by fluorescence microscopy as described above.
Results

T. cruzi binds to TrkC

To determine whether *T. cruzi* binds TrkB and/or TrkC we followed a procedure similar to the one used to study *T. cruzi*/TrkA interaction (18). First, parasites were incubated with Fc chimera of the extracellular domain (ECD) of TrkB and TrkC receptors, hereafter called TrkB and TrkC unless stated otherwise. Second, parasite/TrkB or TrkC mixtures were spun down, washed to remove unbound receptors, and lysed with SDS-Laemmli sample buffer. And third, the lysates were analyzed by western blotting to evaluate *T. cruzi*-bound receptor using antibody specific for human IgG Fc domain. Fc chimera of fibroblast growth factor receptor-1 (FGFR1), widely expressed in the nervous system (24), was included as negative control, and Fc chimera of TrkA as positive control. The results showed that *T. cruzi* binds TrkC and not TrkB (Fig. 1A), and that the binding is dose-dependent (Fig. 1B). Stripping and re-developing the blots with a *T. cruzi*-specific antibody showed that the motile parasites were not lost during washing (Fig. 1A, Parasite/Wash control). *T. cruzi* also binds TrkCECD unlinked to Fc (Fig. 1C, TrkCnon-Fc), suggesting that *T. cruzi*/TrkC binding is independent of the Fc domain.

Binding of *T. cruzi* to TrkC is specifically inhibited by NT-3

We used competition assays to further define the specificity of *T. cruzi*/TrkC molecular interactions. For this, we incubated live parasites with TrkC, with or without the neurotrophins NGF, NT-3 and BDNF to determine whether TrkC binding to *T. cruzi* is specifically blocked by NT-3. Indeed, NT-3, but not BDNF and NGF, inhibits TrkC binding to *T. cruzi* in a dose-dependent manner (Fig. 2A and 2B).
The parasite protein PDNF is responsible for *T. cruzi*/TrkC binding

Because PDNF binds TrkA, it may be that PDNF also binds TrkC, which would be in line with the neurotrophin binding pattern to Trk receptors (23). This possibility was tested by co-immunoprecipitation (31) and *T. cruzi*/TrkC competition assays (18). PDNF, affinity-purified from *T. cruzi* culture supernatants by affinity chromatography (43), was incubated with TrkC, TrkB and FGFR. Receptor/PDNF complexes, if any, were pulled down on protein G-Sepharose (via the Fc arm of the chimeric receptors), and evaluated by western blot with a monoclonal antibody (TCN-2) specific for PDNF (39). We found that TrkC specifically immunoprecipitates PDNF (Fig. 3A), indicating that PDNF is a TrkC ligand. Additionally, soluble PDNF inhibits TrkC binding to the outer membrane of *T. cruzi* in a dose-dependent manner (Fig. 3B), further indicating that PDNF is a TrkC ligand. To determine whether additional *T. cruzi* proteins bind TrkC we repeated the pull-down experiments using whole *T. cruzi* lysate and probing with Chagasic serum. The results showed no evidence for TrkC-binding molecules in *T. cruzi* other than PDNF (data not shown).

PDNF activates TrkC signaling

We used a genetic approach to determine whether *T. cruzi* PDNF activates TrkC signaling. For this, full-length TrkC and TrkB (ECD + trans-membrane domain + intracellular kinase domain) were cloned from human brain RNA and expressed in PC12NNR5 (NNR5) cells using a bicistronic ds-Red mammalian expression vector. We used the neuronal NNR5 cells because they do not express Trk receptors, are readily transfectable, and respond to neurotrophins (20). First, we tested whether transfected cells respond appropriately to physiological ligands. NNR5 cells transfected with TrkB, TrkC or empty vector were cultured in selective media and sorted by FACS to obtain cell populations with similar expression levels of dsRed and, by extension, of transfected receptors (Fig. 4A). Such sorting was performed to facilitate comparisons between
the cell lines stimulated with various agonists. This way, cells transfected with a given receptor responded appropriately and specifically to corresponding ligands (Fig. 4B and 4C).

Second, because activation of MAPK Erk1/2 kinase is key for TrkC-dependent neurite extension, cell differentiation and cell survival (24), we probed whether PDNF activates TrkC-dependent Erk1/2 signaling by treating NNR5TrkC cells with PDNF (150 ng/ml, 12 min) or \textit{T. cruzi} (107/ml, 15 min) and examining whether such treatment promoted the phosphorylation of Erk1/2 by western blotting. We found that both PDNF and \textit{T. cruzi} activate Erk kinase (Fig. 5A and 5B) in a dose-dependent manner (Fig. 5C). In contrast, purified PDNF and live \textit{T. cruzi} did not activate Erk in NNR5TrkB and NNR5EV cells (Fig. 5A and B). Furthermore, the observed P-Erk increase in the NNR5TrkC cells was inhibited by K252a, a selective pharmacological inhibitor of Trk signaling (Fig. 5B) (5, 26), further suggesting \textit{T. cruzi} and PDNF specifically activates TrkC signaling.

To further examine PDNF-dependent TrkC activation, the NNR5 cells were plated and grown in media in the presence or absence of PDNF (250 ng/mL) or NT-3 (100 ng/ml) for 72 hours. Cells were then evaluated for neurite extension by fluorescence microscopy. Without addition of PDNF or NT-3, NNR5TrkB, NNR5TrkC and NNR5EV cells grew into clusters of small, round cells. However, treatment of the cells with PDNF resulted in neurite outgrowth in NNR5TrkC cells but not of NNR5TrkB or NNR5EV (Fig. 5D). This finding further suggests PDNF activates TrkC signaling.

PDNF promotes survival of neuronal and glial cells via TrkC

To determine whether PDNF promotes TrkC-dependent survival of neuronal cells, we induced apoptosis in the NNR5 transfectants by growing the cells in serum-free medium for 3 days in the absence or presence of PDNF (250 ng/ml). Cell death was assessed by fluorescence microscopy using the Hoechst 33343/PI assay. While most NNR5TrkC cells died in serum-free
medium, PDNF rescued ~70% of the serum-starved cells (Fig. 6A and 6B). In contrast, PDNF did not rescue NNR5^{TrkB} and NNR5^{EV} transfectants (Fig. 6A and 6B). This result suggests that PDNF treatment protects a neuronal cell line from cell death in a TrkC-dependent manner.

To determine whether the survival action of PDNF extends to glial cells, we grew a human Schwann cell line in serum-free medium for 3 days without and with PDNF (250 ng/ml), with or without an antibody specific for TrkC or TrkB. Preliminary experiments showed that the commercial TrkC antibodies reacted with TrkC and not TrkA and TrkB, and that the TrkB antibodies were selective for TrkB (not shown). In addition, preliminary experiments confirmed that human Schwann cells express TrkB and TrkC (Fig. 6C, inset) but not TrkA (not shown). We found that PDNF potently promoted survival of Schwann cells (Fig. 6C, compare the Serum bar with the Serum-free and PDNF bars). Because PDNF binds TrkC but not TrkB, and Schwann cells do not express TrkA, this result suggests that Schwann cell protection is mediated by PDNF recognition of TrkC. And this was confirmed by inhibition with Trk-specific antibodies. Thus, the PDNF-induced protection of Schwann cells was blocked by a TrkC-specific antibody (p<0.01) but not by a TrkB-specific antibody (Fig. 6C).

Discussion

Our results demonstrate that T. cruzi parasite-derived neurotrophic factor (PDNF) (8), also known as neuraminidase (36) and trans-sialidase (35, 42, 43), engages the neurotrophic receptor TrkC to promote differentiation of a neuronal cell line and survival of neuronal and glial Schwann cells. TrkC is widely expressed by neurons in the CNS, particularly in the brain cortex, hippocampus, and cerebellum (29). It is also widely expressed in neurons in the dorsal root ganglia and enteric nervous system (6). In addition to neurons, TrkC is also expressed in Schwann cells and at neuromuscular synapses (21). Expression of TrkC in the CNS is in
contrast to that of TrkA, which is restricted to a small subset of cholinergic basal forebrain neurons (28). TrkA is not normally expressed by Schwann cells and other glial cells. Earlier studies showed that *T. cruzi* uses TrkA to activate anti-apoptotic signaling (11). Thus, the discovery that *T. cruzi* also directly binds and activates TrkC accounts for the protection of the glial cells co-cultured with the parasites (7).

PDNF activation of differentiation and survival of cells of the nervous system, through the recognition of TrkC, widens the scope for the possible role *T. cruzi* plays in helping repair infected nervous tissues (3, 10, 18). This would be broadened even further by *T. cruzi* activation of TrkB, as reported, without the use of *T. cruzi*, with a bacterially-expressed truncated form of the trans-sialidase (49). Instead of bacterially-expressed truncated protein, we used full-length endogenous PDNF isolated from the *T. cruzi* strain Silvio to show that it does not bind TrkB under conditions it interacts and activates TrkC (Fig. 1-6). In our experiments, the PDNF/trans-sialidase actions were reproduced by live, invasive parasites (Figs. 1-6). Nevertheless, it is possible that *T. cruzi* (and PDNF) can activate TrkB at conditions distinct from ours such as concentrations higher than those used here.

T. cruzi PDNF is a functional mimic of neurotrophins in as much as it binds and activates TrkA and TrkC. Neurotrophins (NGF, BDNF and NT-3) interact with two different classes of receptors. The first class is called P75^{NTR}, which belongs to the tumor necrosis factor superfamily and as such, has a “death” domain; it binds to all neurotrophins with relatively low affinity (~10⁻⁹ M), and it can mediate cell survival or cell death, promote or inhibit axonal growth, and facilitate or attenuate proliferation (14, 23). Although p75^{NTR} is a rabies virus receptor (46), we have been unable to demonstrate binding of *T. cruzi* to p75^{NTR} (11) (and this work).

The second class of neurotrophin receptors is the so-called high affinity (K_o ~10⁻¹¹) Trk (tropomyosin-related kinase) receptors. Trk^{ECD} is composed of five sub-domains, a leucine-rich
repeat structure sandwiched between two cysteine-rich cluster domains followed by two immunoglobulin (Ig)-like domains. Neurotrophins bind to the membrane-proximal Ig-like domain, as determined by many criteria, including co-crystal structures of isolated domain or the entire TrkECD region with neurotrophin (47, 48). We hypothesize that T. cruzi interacts with the Ig-2 like domain of TrkC because PDNF (and T. cruzi) binding to TrkC ECD is specifically inhibited by the TrkC ligand NT-3 (Fig. 2). Furthermore, each Trk receptor spans the membrane once and ends in the cytoplasm with a tyrosine kinase domain, which becomes activated after ECD dimerization triggered by neurotrophin binding (24, 47). Thus, it may be that T. cruzi, like NT-3, dimerizes TrkC to activate Erk signaling (Fig. 5) and promote cell survival and differentiation (Fig. 6).

Because PDNF is anchored to the trypanosome outer membrane by a GPI structure (41), engagement of TrkC by T. cruzi should occur during trypanosome/host cell interaction. Such interaction is required for the parasite to penetrate host cells. T. cruzi-dependent TrkC engagement should extend to uninfected cells, given that PDNF is readily shed from the trypanosome surface into the water-soluble, diffusible factor (41). T. cruzi could emulate NT-3 in vivo by protecting cells against damage in nervous tissues invaded by T. cruzi.

Neuroregeneration events occur in the gastrointestinal tract of patients in the indeterminate (asymptomatic) phase of Chagas’ disease (25), and in the megacolon of patients with chronic symptomatric disease (16).
Figure Legends

Fig. 1. *T. cruzi* binds TrkC

(A) Live parasites (5 X 10^6) were incubated with equal amounts of the indicated soluble receptors (1 µg), spun down, washed to remove unbound receptors, and lysed to reveal bound receptor by western blotting using anti-human IgG-HRP. Receptor Load Control represents an equal volume of supernatant from each sample after the first spin to evaluate unbound receptor by western blotting. Note that TrkC^Fc^ is visibly reduced in the supernatant obtained by incubating parasites with TrkC. Parasite/Wash control represents the total number of parasites after washes revealed by western blotting with *T. cruzi* specific antibody TCN-2. Note that parasite load was constant for every lane. (B) Dose-response of *T. cruzi*/TrkC^Fc^ binding. (C) Dose response of *T. cruzi*/TrkC^non-Fc^ binding. Bound receptor revealed using anti-TrkC antibody. (B and C) Relative binding was calculated using parasite/wash control as standard. Experiments in B and C were done 3X and in A, 5X, all with similar results.

Fig. 2. NT-3 specifically inhibits *T. cruzi*/TrkC binding

(A) 2X molar amounts of recombinant NT-3, BDNF or NGF (0.6 µg) to TrkC^Fc^ were incubated with *T. cruzi* parasites (5 X 10^6) and TrkC^Fc^ (1 µg). Parasites were then spun down, washed, and bound TrkC was revealed by western blotting using anti-human IgG antibodies. (B) Dose response of increasing concentrations of NT-3 incubated with live *T. cruzi* and TrkC^Fc^. Bound TrkC^Fc^ was calculated by scanning densitometry, with each sample standardized against its parasite wash control. (B inset) A representative blot from the experiment is shown. Experiments in A and B were done 3X, with similar results.
Fig. 3. PDNF binds TrkC

(A) Receptor (1 µg) was incubated with PDNF (1 µg) and mixed with protein G-Sepharose to pull down Fc-receptors. Co-immunoprecipitated PDNF was revealed by western blotting using TCN-2 mAb. Total receptor was revealed using anti-human IgG antibodies. The additional blot shows 1 µg PDNF visualized by western blot developed using TCN-2 mAb. (B) Parasites were incubated with 1 µg of TrkC^{Fc} and increasing concentrations of PDNF. Parasites were washed and evaluated for bound TrkC^{Fc}. Bound TrkC^{Fc} was calculated by densitometry, with each sample standardized against its parasite wash control, as revealed with Chagasic serum (one of several bands shown). Experiments in A and B were done 3X, with similar results.

Fig. 4. Trk-deficient PC12-NNR5 (NNR5) cells transfected with TrkC, TrkB and empty vector (EV) respond appropriately to corresponding ligands.

TrkB and TrkC were cloned from human RNA into the bicistronic mammalian expression vector pIRES-dsRed that was used to transfect PC12^{NNR5} cells. (A) NNR5^{TrkC}, NNR5^{TrkB} and NNR5^{EV} (empty vector) cells were sorted by FACS for dsRed expression to obtain similar expression levels; rectangles represent the cells selected from each population. X and Y axes represent channels that detect green (GFP) and red fluorescent protein (RFP), respectively. (B) Erk phosphorylation (P-Erk) was examined by western blot in transfected cells cultured in serum-free medium overnight and treated with NT-3 or BDNF (100 ng/mL) for 12 minutes at 37°C; the upper and lower band in each blot represent Erk1 (MAPK3) and Erk2 (MAPK1), respectively. (C) Transfected cells were cultured in medium with or without NT-3 (100 ng/mL) or BDNF (100 ng/mL) for 3 days, fixed, probed with anti-neurofilament primary antibody and alexa-488 secondary antibody and imaged (20X) to visualize neurite extension. Experiments in Fig. 4 were repeated multiple times at various points to ensure cells maintained correct responsiveness.
Fig. 5. T. cruzi/PDNF activates TrkC signaling.

(A) Cells were cultured in serum-free medium overnight, treated with the Trk-specific inhibitor K252a (1µM) for 1 hr where indicated and then with 10^6 parasites or not for 12 minutes at 37°C. Cell lysates were analyzed by western blot to evaluate phospho-Erk and total Erk. (B) Similar to A, but plated cells were treated with PDNF (200 ng/mL) for 12 minutes. (C) PDNF dose-response treatment of NNR5^{TrkC} as in B with accompanying graph. Phosphorylation (Fold Increase) was calculated by scanning densitometer. Each P-Erk band was standardized against its Total Erk band, then standardized against vehicle (DMEM) which was arbitrarily set to 1. Experiments in A, B and C were done 2X, with similar results obtained. (D) NNR5^{TrkC}, NNR5^{TrkB} and NNR5^{EV} cells were plated and cultured for 2-3 days with PDNF (250 ng/mL) or NT-3 (100 ng/mL). Cultures were then fixed, probed with anti-neurofilament primary antibody and alexa-488 secondary antibody and imaged (20X) to visualize neurite extension; arrows point towards neurites. (D, inset) Neurite extension was quantified for three individual experiments; error bars represent the SEM between the three experiments and 50 or more cells were counted for each condition in each experiment. Neurite extension (%) is the number of cells with at least one neurite with a length greater than 100% the diameter of the cell body, divided by total cells.

Fig. 6. PDNF promotes TrkC-dependent neuronal and glial cell survival

(A) NNR5^{TrkC}, NNR5^{TrkB} and NNR5^{EV} cells were plated in triplicate and cultured for 3 days in 1% FCS, serum-free DMEM or serum free-medium supplemented with PDNF (250 ng/mL). Cells were stained with propidium iodide and Hoechst nuclear staining reagents and counted by fluorescence microscopy (20 X). (B) Graph of experiment A with PDNF survival normalized against Serum-free survival; error bars represent the SEM between experiments; average of three experiments, each point in triplicate. (C) Schwann cells were plated in triplicate then cultured in conditions as indicated: 1% FBS; serum-free or serum-free and α-TrkC (1µg/ml), α-
TrkB (1 µg/mL), PDNF (250 ng/mL) or a combination. Error bars represent the variation between experiments; p-value (ANOVA) was calculated using Prism software; Average of two experiments, each point in triplicate.

Acknowledgements

We thank Tugba Bagci for the human brain RNA, and Thereza Imanishi-Kari and Jin Han for help in cloning Trk receptors. This work was supported by NIH Grants NS40574 and NS42960.
References

46. **Tuffereau, C., J. Benejean, D. Blondel, B. Kieffer, and A. Flamand.** 1998. Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. EMBO J **17**:7250-7259.

