A Novel Functional Variant in the Stem Cell Growth Factor (SCGF) Promoter

(-539C/T) Protects Against Severe Malarial Anemia

Collins Ouma1,2, Christopher C. Keller3,4, Gregory C. Davenport3,5, Tom Were1,6, Steve Konah1, Michael F. Otieno5,7, James B. Hittner8, John M. Vulule9, Jeremy Martinson3, John M. Ong’echa1,5, Robert E. Ferrell10, and Douglas J. Perkins1,5

1 University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
2 Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
3 Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
4 Laboratory of Human Pathogens, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
5 Global and Geographic Medicine Program, Division of Infectious Diseases, University of New Mexico School of Medicine, NM, USA
6 Department of Pathology, Kenyatta University, Nairobi, Kenya
7 Department of Pre-Clinical Sciences, Kenyatta University, Nairobi, Kenya
8 Department of Psychology, College of Charleston, Charleston, SC, USA
9 Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
10 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA

Running title: SCGF promoter variants and severe malaria anemia
Key words: SCGF, severe malaria, polymorphism, protection
Abstract word count: 248
Text Word Count: 3739
There is no conflict of interest for any of the authors of the manuscript due to commercial or other affiliations.

Financial support: This work was supported by grants from the National Institute of Health [AI51305-02 (DJP) and TW05884-02 (DJP)].

The study was approved by the ethical and scientific review committees at the Kenya Medical Research Institute and the institutional review board at the University of Pittsburgh and University of New Mexico.

Please address any correspondences to:

Dr. Douglas J. Perkins
Director, Global and Geographic Medicine Program
University of New Mexico
Division of Infectious Diseases
MSC10-5550
1 University of New Mexico
Albuquerque, NM 87131-0001
phone: 505-272-6867
fax: 505-272-8441
e-mail: dperkins@salud.unm.edu
ABSTRACT

Plasmodium falciparum malaria is a leading global cause of infectious disease burden. In holoendemic P. falciparum transmission areas, such as western Kenya, severe malarial anemia (SMA) results in high rates of pediatric morbidity and mortality. Although the pathophysiological basis of SMA is multifactorial, we recently discovered that suppression of unexplored hematopoietic growth factors that promote erythroid and myeloid colony development, such as stem cell growth factor [SCGF, C-type lectin domain family member 11A (CLEC11A)], was associated with enhanced development of SMA and reduced erythropoietic responses. To extend these investigations, the relationship between a novel SCGF promoter variant (-539C/T, rs7246355), SMA (hemoglobin, Hb<6.0 g/dL), and reduced erythropoietic responses (reticulocyte production index, RPI<2.0) was investigated in Kenyan children (n=486) with falciparum malaria from western Kenya. Circulating SCGF was positively correlated with hemoglobin levels (r=0.251, P=0.022) and the RPI (r=0.268, P=0.025). Children with SMA also had lower SCGF levels than the non-SMA group (P=0.005). Multivariate logistic regression analyses controlling for covariates demonstrated that homozygous T individuals were protected against SMA (OR; 0.57, 95% CI, 0.34-0.94; P=0.027) relative to CC (wild type) carriers. Carriers of the TT genotype also had higher SCGF levels in circulation (P=0.018) and in peripheral blood mononuclear cell culture supernatants (P=0.041), as well as an elevated RPI (P=0.005) relative to individuals with the CC genotype. Results presented here demonstrate that homozygous T at -539 in the SCGF promoter is associated with elevated SCGF production, enhanced erythropoiesis, and protection against the development of SMA in children with falciparum malaria.
INTRODUCTION

Severe malarial anemia (SMA) is the primary manifestation of severe malaria in infants and young children in holoendemic *Plasmodium falciparum* transmission areas, such as western Kenya (7, 34). SMA also accounts for the greatest worldwide proportion of malaria-associated morbidity and mortality (8, 41, 48). Causal etiologies of SMA include, direct and indirect destruction of parasitized and non-parasitized red blood cells (RBCs), inefficient erythropoiesis, and dyserythropoiesis (1). Previous results from our laboratory further demonstrated that pediatric SMA in a holoendemic transmission area of western Kenya is characterized by a reduced erythropoietic response (46).

Although erythropoietin (EPO), stem cell factor (SCF), interleukin (IL)-3, and IL-6 are important for promoting enhanced erythropoiesis in malaria and other diseases (9, 13, 18, 28, 43), previous studies suggest that insufficient production of these soluble mediators may not fully account for malaria-induced anemia (4, 10, 11, 27, 40).

Human stem cell growth factor [SCGF, C-type lectin domain family member 11A (CLEC11A)] is a largely uncharacterized hematopoietic mediator that promotes enhanced erythroid progenitor formation from human bone marrow (16). Human SCGF cDNA encodes a 29 kDa polypeptide (15) for which there are currently two known isoforms: SCGF-α, a 323 amino acid protein; and SCGF-β, a 245 amino acid protein formed from cleavage of the conserved carbohydrate domain (30). In individuals undergoing stem cell transplantation, elevated serum SCGF levels are associated with enhanced hematopoietic recovery (17). Although previously unexplored in the malaria, we recently showed that reduced SCGF levels in circulation and in cultured peripheral blood mononuclear cells (PBMC) was associated with both SMA and reduced erythropoiesis (22).

To more fully elucidate the potential importance of SCGF in human malaria, variation in the SCGF promoter was explored, a strategy we have previously used in western Kenya to identify immune response genes that condition susceptibility to pediatric SMA (3, 35, 37, 38). Although no studies to date have described the effect of polymorphic variability in SCGF on any disease, we focused on a single nucleotide polymorphism (SNP) in the promoter region (-539C/T; rs7246355)
based on the allelic distribution in the Yoruba in Ibadan population in Nigeria examined as part of the HapMap (phase 3) Project. The association between SCGF-539C/T variants and susceptibility to SMA was investigated in Kenyan children (n=486, age <3-36 mos.) exposed to holoendemic *P. falciparum* transmission. To further explore the potential importance of SCGF-539 genotypes, we determined the relationship between genotypic variants, SCGF levels (*in vivo* and *in vitro*), and erythropoietic responses in children with malaria.
MATERIALS AND METHODS

Study participants. Children with *P. falciparum* malaria (3-36 mos., n=486) presenting at hospital for their first documented visit for acute malaria were recruited at Siaya District Hospital, a rural setting in western Kenya with holoendemic *P. falciparum* transmission (29). Since this region is holoendemic for *P. falciparum* transmission, sample collection was carried out throughout the year. The study was performed in a homogenous population from the Luo ethnic group. A full description of the study site and the manifestations of pediatric malaria in this region are presented in our previous report (34). Based on a longitudinal study examining the distribution of >14,000 hemoglobin (Hb) measurements in an age- and geographically-matched reference population in western Kenya, SMA was defined as Hb<6.0 g/dL with any density parasitemia (29). This definition of SMA is appropriately defined by Hb distributions according to age, gender, and geographic context. However, children were also classified according to the World Health Organization (WHO) definition of SMA (Hb≤5.0 g/dL with any density parasitemia) (47) to place the current findings into a broader global context. Non-SMA was defined as Hb≥6.0 g/dL and any density parasitemia (modified definition) or Hb≥5.0 g/dL and any density parasitemia (WHO definition). None of the children included in the study had cerebral malaria or any other clinical manifestations other than SMA or malaria from non-*P. falciparum* species. Since our previous study, and those of others, demonstrated that HIV-1 and bacteremia impact on the development and severity of malarial anemia (5, 36), all children were tested for these co-pathogens and results were appropriately controlled for in the statistical models (see procedures listed below). Pre- and post-test HIV counseling was provided for the parents/guardians of all study participants. Written informed consent, in the language of choice (i.e., English, Kiswahili, or Dholuo), was obtained from the parents/guardians of participating children. The study was approved by the ethical and scientific review committees at the Kenya Medical Research Institute and the Institutional Review Boards at the University of Pittsburgh and the University of New Mexico.
Laboratory procedures. Venous blood samples (<3.0 mL) were obtained prior to administration of antimalarials and/or any other treatment interventions. Asexual malaria parasites (trophozoites) were counted against 300 leukocytes in peripheral blood smears stained with 3% Giemsa. Reticulocyte counts were determined with new methylene blue staining of thin blood films. The reticulocyte production index (RPI) was calculated as follows: \[\text{RPI} = \frac{\text{reticulocyte count} \times \text{hematocrit (Hct)}}{0.36} \] where \(R = \text{reticulocyte count} \) and \(M = \text{maturation factor} \), and \(x = \text{average normal population Hct - patient's Hct} \) (46). Parasite density was estimated using the white blood cell (WBC) count/\(\mu \)L of each individual. Complete hematological parameters were determined with a Beckman Coulter® AcT diff2™ (Beckman-Coulter Corporation). The presence of the sickle cell trait (HbAS) was determined by cellulose acetate electrophoresis, while typing for the common African 3.7kb \(\alpha \)-globin deletion (\(\alpha \)-thalassemia) was carried out by polymerase chain reaction (PCR). The Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency screening was determined through the fluorescent spot test (Sigma-Aldrich). HIV-1 exposure and infection were determined by serological and HIV-1 proviral DNA PCR testing, respectively, according to our published methods (36). Trimethoprim-sulfamethoxazole was administered to all children that were positive for one or both serological HIV-1 tests. At the time of sample collection, none of the HIV-1(+) study participants had been initiated on antiretroviral treatment. Bacteremia was determined using Wampole™ Isostat® Pediatric 1.5 system (Wampole Laboratories) and blood was processed according to the manufacturer’s instructions. API biochemical galleries (bioMerieux, Inc.) and/or serology were used for identification of bacterial isolates.

Isolation and culture of peripheral blood mononuclear cells (PBMCs): PBMCs were purified from venous blood (<3.0 mL, \(n=37 \)) collected in EDTA-containing vials using Ficoll/Hypaque as described previously (45). Cells were plated at \(1 \times 10^6 \) cells per mL in Dulbecco’s modified Eagles
medium (DMEM) containing 10% pooled human serum (heat inactivated at 56˚C for 30 min) and cultured for 48 hrs.

SCGF genotyping. DNA was extracted from blood spotted on FTA® Classic cards (Whatman Inc.) using the Gentra System (Gentra System, Inc.). SCGF -539C/T genotyping was carried out using a Taqman 5’ allelic discrimination Assay-By-Design™ method according to manufacturer’s instructions (Assay ID: C_29188597_10; Applied Biosystems, Inc.). In brief, PCR was performed in a total volume of 5 µL with the following amplification protocol: 95˚C for 10 min, followed by 40 cycles (95˚C for 15 s, 60˚C for 1 min). Following PCR, the genotype of each individual was determined using allelic-specific fluorescence on the ABI Prism® 7900HT sequence detection system. SDS 2.1® software was then used for allelic discrimination (Applied Biosystems, Inc.).

Determination of SCGF levels: Plasma and supernatant concentrations of SCGF (ng/mL) were measured in triplicate at 1:5 and 1:10 dilutions by quantitative sandwich ELISA. Affinity-purified polyclonal antibody (goat anti-human) specific for SCGF-β (PeproTech, Inc.) was coated onto 96-well plates overnight at room temperature followed by blocking for 1 hr and subsequent washing. Samples and standards (recombinant human SCGF-β, PeproTech, Inc.) were incubated at room temperature for 2 hrs, washed, and then incubated with a biotin-conjugated SCGF-β-specific detection antibody (PeproTech Inc.) for another 2 hrs. Plates were washed and incubated with ExtraAvidin (Sigma-Aldrich), a horseradish peroxidase-streptavidin conjugate, washed again, and then visualized with TMB Substrate Solution (BD Biosciences PharMingen) for 30 min while protected from light. Absorbance was determined at 405 nm. The detection limit for SCGF was 0.2 ng/mL.

Statistical analyses. Statistical analyses were performed using SPSS (Version 15.0). Chi-square analyses were used to examine differences between proportions. Across group comparisons of non-
parametric data were determined by Kruskal-Wallis tests, while Mann-Whitney U tests were used for pairwise comparisons. Spearman’s correlations were used to assess the association between circulating SCGF and hematological indices. Deviations from Hardy-Weinberg Equilibrium (HWE) were tested using web-based site www.tufts.edu/~mcourt01/Documents/Court%20lab%20-HW%20calculator.xls. The association between the SCGF promoter genotypes and SMA were determined by multivariate logistic regression, controlling for the potential confounding effects of age, gender, HIV-1 status [including both HIV-1 exposed and definitively HIV-1(+) results], bacteremia, sickle cell trait (HbAS), G6PD deficiency, and α-thalassemia status. Significance was set at $P \leq 0.05$.
RESULTS

Demographic, clinical, and laboratory characteristics of the study participants. To investigate the role of variability in the SCGF promoter (i.e., -539C/T) in conditioning susceptibility to SMA, children (aged <3-36 mos, n=486) presenting at hospital with acute *P. falciparum* malaria were stratified into non-severe malarial anemia (non-SMA, 6.0 g/dL ≤ Hb < 11.0 with any density parasitemia; n=302) and severe malarial anemia (SMA, Hb < 6.0 g/dL with any density parasitemia; n=184) (29). The demographic, clinical, and laboratory characteristics of the study participants are presented in Table 1. There were no significant differences in gender distribution between the groups (\(P=0.302\)). Age (mos) differed between the groups, with the non-SMA group being significantly older than those in the SMA group (\(P=0.001\)). Axillary temperature (°C) was comparable between the groups (\(P=0.307\)). As expected, based on the stratification according to anemia status, Hb concentrations (g/dL) and red blood cell (RBC) counts (\(×10^{12}/L\)) significantly differed between the groups (\(P=0.001\) and \(P=0.001\), respectively). The reticulocyte production index (RPI) was significantly different between the groups (\(P=0.007\)). Furthermore, white blood cell (WBC) counts (\(×10^{3}/\mu L\)) were significantly higher in the SMA group relative to the non-SMA group (\(P=0.001\)), despite the fact that proportion of individuals with bacteremia were comparable between the non-SMA (69/302, 22.8%) and SMA groups (51/184, 27.7%, \(P=0.105\)). Peripheral parasitemia density (/µL) and prevalence of high-density parasitemia (HDP, ≥ 10,000 parasites/µL) were lower in children with SMA (\(P=0.081\) and \(P=0.054\), respectively).

Relationship between SCGF and anemia. Prior to investigating the influence of polymorphic variability in SCGF on malarial anemia, the relationship between circulating SCGF and Hb levels was determined. As shown in Figure 1A, circulating SCGF was positively correlated with Hb concentrations (\(r=0.446, P=0.001\)). To further determine if altered levels of SCGF were associated with anemia severity, circulating SCGF was compared between parasitemic children with and without SMA. Consistent with the positive relationship between SCGF and Hb levels, children with SMA had...
significantly lower SCGF concentrations [median (IQR); 47.00 (43.24-57.48)] compared to the non-SMA group [63.00 (56.31-63.86), \(P=0.005 \), Figure 1B], demonstrating that reduced circulating SCGF levels are associated with more profound anemia.

Distribution of SCGF genotypes. After establishing that circulating SCGF levels were significantly associated with anemia severity, SCGF -539C/T genotypes were determined. Genotypic distributions of SCGF -539C/T promoter variants in the non-SMA (n=302) and SMA (n=184) groups are presented in Table 2. The prevalence of SCGF -539 genotypes in the population were 27.6% CC, 36.8% CT, and 35.6% TT with overall allele frequencies of 0.46 for C and 0.54 for T. There was significant departure from Hardy-Weinberg Equilibrium (HWE) in the cohort (\(\chi^2=32.56, P<0.001 \)). The genotypic distribution of SCGF -539 in the non-SMA group was 25.2% CC, 35.8% CT, and 39.1% TT yielding allele frequencies of 0.43 for C and 0.57 for T. The non-SMA group had significant departure from HWE (\(\chi^2=22.12, P<0.001 \)). Distributions of genotypes in the SMA group were 31.5% CC, 38.6% CT, and 29.9% TT with allele frequencies of 0.51 for C and 0.49 for T. The SMA group also displayed significant departure from HWE (\(\chi^2=9.56, P<0.019 \)). Further analysis revealed that the distribution of the CC genotype was significantly higher in the SMA relative to non-SMA group (\(P<0.001 \)), while the TT genotype was significantly higher in the non-SMA group (\(P=0.025 \)) relative to SMA group. However, the distribution of heterozygous individuals was comparable between the two groups (\(P=0.259 \)).

Association between SCGF promoter polymorphisms and SMA. To determine the role of SCGF -539C/T promoter variants in conditioning susceptibility to SMA, multivariate logistic regression analyses were conducted controlling for the potential confounding effects of age, gender, HIV-1 status, bacteremia, sickle-cell trait, G6PD deficiency, and \(\alpha \)-thalassemia status (2, 5, 36, 44, 50). As shown in Table 3, relative to CC carriers, children with homozygous T allele had a 43% reduction in
SMA (Hb <6.0 g/dL) (OR; 0.57, 95% CI, 0.34-0.94; \(P = 0.027 \)). Additional analyses using the WHO definition of SMA (Hb \(\leq 5.0 \) g/dL) (47) revealed that the TT genotype was associated with a 49% reduction in SMA (OR; 0.51, 95% CI, 0.33-0.95; \(P = 0.030 \), Table 3) relative to homozygous C individuals. Thus, carriers of the TT genotype with falciparum malaria show significant protection against the development of SMA using both the modified and WHO definitions of SMA.

Prior to determining if sickle cell trait has a negative or positive epistatic interaction with the SCGF -539C/T genotypes in conditioning SMA, multivariate logistic regression analysis was performed to determine the individual association between sickle cell trait and SMA (for both the modified and WHO definitions of SMA) controlling for the confounding effects of age, gender, HIV-1 status, bacteremia, G6PD deficiency, and \(\alpha \)-thalassemia status. Carriers of the sickle cell trait had a 36% reduction in SMA (OR; 0.64, 95% CI, 0.23-0.84; \(P = 0.018 \)) using the modified definition of SMA (29) and a 40% reduction in SMA (OR; 0.60, 95% CI, 0.22-0.87; \(P = 0.023 \)) using the WHO definition of SMA (47). To test for epistasis, individuals were further stratified into the following groups: -539C/HbA, -539C/HbS, -539T/HbA and -539T/HbS based on the presence of alleles C or T at the -539C/T locus and/or A or S at the HbAS locus. Multivariate logistic regression analysis controlling for age, gender, HIV-1 status, bacteremia, G6PD deficiency, and \(\alpha \)-thalassemia status demonstrated that the -539C/HbA individuals had increased susceptibility to SMA using the modified (OR; 1.68, 95% CI, 1.11-2.56; \(P = 0.014 \)) (29) and WHO definition of SMA (OR; 1.55, 95% CI, 0.94-2.55; \(P = 0.089 \)) (47). In addition, carriage of -539T/HbS was associated with an 85% reduction in SMA with the modified definition (OR; 0.15, 95% CI, 0.11-0.53; \(P = 0.017 \)) (29) and an 82% reduction in susceptibility to SMA using the WHO definition (OR; 0.18, 95% CI, 0.13-0.62; \(P = 0.006 \)) (47). However, no significant associations were observed between SMA and either -539T/HbA (OR; 0.73, 95% CI, 0.48-1.12; \(P = 0.148 \)) or -539C/HbS (OR; 1.36, 95% CI, 0.59-1.69; \(P = 0.504 \)). Taken together, these results demonstrate that increased protection was present when the sickle cell trait was co-inherited with the T allele, showing a positive epistatic interaction between the sickle cell trait and SCGF -539T alleles.
Influence of SCGF variants on in vivo and in vitro SCGF concentrations. Additional experiments examined the association between SCGF -539C/T promoter variants and circulating SCGF levels. The difference in SCGF across the genotypic groups was of borderline significance ($P=0.050$, Figure 2A). Individuals with the TT genotype [median (IQR); 60.00 (56.00-66.50)] had significantly higher SCGF levels relative to homozygous C carriers [49.00 (38.00-62.50), $P=0.018$], and non-significantly elevated levels compared to heterozygous children [54.00 (37.00-68.50), $P=0.087$, Figure 2A]. Circulating SCGF levels were comparable between the homozygous C group and heterozygous individuals ($P=0.594$, Figure 2A).

Consistent with the in vivo results, measurement of SCGF in PBMC culture supernatants revealed that homozygous T carriers [14.50 (10.76-19.00)] had significantly higher SCGF levels relative to those with homozygous C alleles [11.95 (5.66-12.59), $P=0.041$], and non-significantly elevated levels compared to heterozygous children [12.85 (8.20-15.92), $P=0.362$, Figure 2B]. Thus, a C to T transition at -539 in the SCGF promoter is associated with significant changes in both in vivo and in vitro SCGF levels.

Association between SCGF variants and erythropoiesis. Previous in vitro studies demonstrated that SCGF promotes enhanced erythroid formation (16). An effective, non-invasive measure of the erythropoietic response, in the absence of bone marrow aspirates, is to determine the reticulocyte production index (RPI) that accounts for the production of erythrocytes corrected for the degree of anemia (24). There was a significant positive correlation between the RPI and circulating SCGF ($r=0.268$, $P=0.025$, Figure 3A), suggesting that SCGF may be an important factor for promoting erythropoiesis in children with malaria. To determine if polymorphic variability at SCGF -539 influenced the erythropoietic response, the RPI was compared across the genotypic groups. There was a significant inter-group difference in the RPI according to SCGF promoter variants ($P=0.024$). Individuals with the TT genotype [median (IQR); 3.55 (2.86-4.41)] had a significantly higher RPI than homozygous C carriers [2.37 (1.38-2.63), $P=0.005$], but comparable reticulocyte responses to
heterozygous children \[3.25 \text{ (2.59-4.24), } P=0.560, \text{ Figure 3B}\]. Elevated levels of SCGF in homozygous T individuals, coupled with an increased erythropoietic response and protection against SMA, suggests that SCGF may be important for augmenting erythropoiesis in children with falciparum malaria, and that SCGF levels are conditioned by genotype.
DISCUSSION

Studies in our laboratories using cDNA membrane arrays recently identified SCGF as one of the most differentially expressed genes in PBMCs stimulated with malarial products (i.e., *P. falciparum*-derived hemozoin) (22). These findings were then extended to our field studies in western Kenya which demonstrated that *in vivo* and *in vitro* suppression of SCGF was associated with development of SMA and a reduced erythropoietic response. Based on these findings, we hypothesized that variation in the SCGF promoter may alter susceptibility to SMA. Cross-sectional results presented here in children with falciparum malaria illustrate that carriers of the TT (mutant) genotype are protected against SMA. Presence of homozygous T allele in children with malaria was also associated with significantly higher SCGF levels in circulation and in cultured PBMC. Further analyses demonstrated that the high-producing SCGF genotype (TT) was associated with protection against SMA and an enhanced erythropoietic response (i.e., an elevated RPI).

Previous hematological studies in individuals with malaria illustrate that bone marrow abnormalities, such as ineffective erythropoiesis, dyserythropoiesis, and reduced erythroblast proliferative rates, contribute to the development of severe anemia (1, 12, 42, 49). Moreover, *P. falciparum* malaria is defined by a sub-optimal reticulocyte response for the degree of anemia, even under conditions in which there are adequate levels of erythropoietin, a critical stimulus for erythropoiesis (25, 32). Our previous results in western Kenya showing that children with SMA have a reduced erythropoietic response (RPI) are consistent with these findings (46). Although the underlying biological pathways responsible for suppression of erythropoiesis in malaria-infected individuals remain only partially defined, important causal factors include: parasite-mediated erythrocyte destruction; elimination of parasitized and non-parasitized RBCs by the reticuloendothelial system; and an excessive or sustained innate immune response that polarizes adaptive T cell responses towards production of inflammatory mediators that suppress erythroid development (31, 32, 39). Previous results from our laboratory also demonstrate that dysregulation in cytokines,
chemokines, and effector molecules are important for promoting inflammatory-derived anemia in children with malaria (4, 19-21, 23, 33, 35, 46).

In this study, we extend our previous findings by investigating the impact of a growth factor (i.e., SCGF) on anemia outcomes in children with malaria. Since SCGF promotes growth of erythroid and myeloid colonies (14, 16), the association between SCGF, Hb, and the RPI were examined in children with falciparum malaria, both independently and according to SCGF promoter variants. To date, only a single polymorphic variant has been described in the SCGF gene (i.e. -539C/T). Genotyping of the C to T transition at position -539 in the SCGF promoter revealed C and T allele frequencies of 46% and 54%, respectively. Allele frequencies in the Kenyan cohort differ slightly from those reported in a reference African population (i.e., 52%C and 48%T, respectively) (http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=7246355). Since the genotyping error rate in this assay was below 2%, differences in the distribution of SCGF alleles suggest that this locus may be subject to differential selective pressure (perhaps due to historic *P. falciparum* endemicity) that varies according to geographic region. Consistent with this notion, genotypic distributions showed significant departure from HWE in the non-SMA and SMA groups, and in the overall cohort. These results are consistent with the fact that stratification is common, particularly in host-immune response genes that mediate susceptibility to polygenic infectious diseases, such as malaria (26). Geographic and ethnic variation, along with significant differences in genotypic distributions between children with and without SMA, further suggests that variation at position -539 in SCGF may be a useful addition to the range of genetic markers utilized in future studies aimed at identifying the gene and gene pathways that condition susceptibility to severe malaria.

Multivariate modeling, controlling for the appropriate co-factors, demonstrated that carriage of the homozygous T allele was associated with a significant reduction in the development of SMA relative to the reference genotype (CC). Moreover, children with the TT genotype had significantly higher circulating and PBMC culture supernatant SCGF levels. These findings suggest that PBMC may be an important source of SCGF in circulation. Although we have previously demonstrated that
acquisition of hemozoin by monocytes causes suppression of SCGF transcripts and protein (6), it remains to be determined if phagocytosis of malarial pigment by bone marrow macrophages leads to reduced SCGF in the bone marrow milieu. Thus, it is currently unclear if reduced SCGF from a peripheral source or in the local tissue space contributes to reduced Hb concentrations. The exact mechanism by which changes in SCGF production impact on Hb levels also remains unclear. Results in the current manuscript showing that homozygous T individuals are protected against SMA, have significantly higher SCGF levels, and also have a significantly higher RPI suggests that the primary influence of SCGF on Hb concentrations is mediated by altering the maturation of RBCs in the bone marrow.

Although variation in the SCGF promoter at -539 was associated with susceptibility to SMA and functional changes in SCGF levels, it remains possible that an unidentified polymorphism(s) that is in linkage disequilibrium with this particular variant may mediate the effects described here. For example, we observed positive epistasis between the sickle cell trait and SCGF -539 T allele. Such interactions may amplify or moderate the individual effects of the gene(s). Future studies should include examination of additional SNPs within and outside this region to test this alternative hypothesis. Furthermore, establishing how SCGF interacts with additional soluble mediators, such as SCF, IL-3, and IL-6 will be important since these factors foster efficient increases in erythropoiesis (13). In addition, to provide insight into the direct role of SCGF on the erythropoietic cascade, it will be essential to determine the effect(s) of SCGF on bone marrow progenitor cells from children with malarial anemia. Since this is the first report describing how variation at -539 in the SCGF promoter is associated with functional changes in SCGF production and anemia outcomes, it will be important to see if this variant also conditions susceptibility to anemia in other acute and chronic inflammatory diseases.
ACKNOWLEDGEMENTS

We are indebted to the Siaya District Hospital team and the University of New Mexico/KEMRI staff for support and management: Nicholas Otieno and Martha Atandi for clinical support; Tabitha Otieno, Chris Wasonga, Joan Ochieng, Godfrey Ogulla, and Evans Raballah for laboratory support; Vincent Omanje, Jared Ondijo and Caroline Odette for data management; Rodney Bosire for field support; and Anne On’gondo for administrative support. We are also grateful to the parents/guardians of the study participants and the children that participated in the study. These data are published with the approval of the Director, Kenya Medical Research Institute (KEMRI).
REFERENCES

Table 1. Demographic, clinical, and laboratory characteristics of the study participants.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Non-SMA</th>
<th>SMA</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of participants</td>
<td>302</td>
<td>184</td>
<td>N/A</td>
</tr>
<tr>
<td>Gender (n, %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>158 (52.3)</td>
<td>91 (49.5)</td>
<td>0.302<sup>a</sup></td>
</tr>
<tr>
<td>Female</td>
<td>144 (47.7)</td>
<td>93 (50.5)</td>
<td></td>
</tr>
<tr>
<td>Age (mos.)</td>
<td>11.0 (10.0)</td>
<td>8.0 (7.0)</td>
<td>0.001<sup>b</sup></td>
</tr>
<tr>
<td>Axillary temperature (°C)</td>
<td>37.5 (1.7)</td>
<td>37.4 (1.5)</td>
<td>0.307<sup>b</sup></td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>8.1 (2.7)</td>
<td>4.9 (1.3)</td>
<td>0.001<sup>b</sup></td>
</tr>
<tr>
<td>RBC count (×10<sup>12</sup>/L)</td>
<td>3.71 (1.29)</td>
<td>2.11 (0.89)</td>
<td>0.001<sup>b</sup></td>
</tr>
<tr>
<td>Reticulocyte production index, RPI</td>
<td>1.51 (2.02)</td>
<td>1.12 (1.77)</td>
<td>0.007<sup>b</sup></td>
</tr>
<tr>
<td>WBC count (×10<sup>3</sup>/µL)</td>
<td>11.05 (5.80)</td>
<td>13.95 (9.85)</td>
<td>0.001<sup>b</sup></td>
</tr>
<tr>
<td>Parasite density (/µL)</td>
<td>20, 612 (49, 528)</td>
<td>16, 287 (34, 322)</td>
<td>0.081<sup>b</sup></td>
</tr>
<tr>
<td>HDP (n, %)</td>
<td>197 (65.2)</td>
<td>105 (57.1)</td>
<td>0.054<sup>a</sup></td>
</tr>
</tbody>
</table>

Data are median (interquartile range, IQR) unless otherwise stated. Abbreviations: HDP, high-density parasitemia (≥10,000 parasites/μL); SMA, severe malarial anemia (Hb<6.0 g/dL, with any density parasitemia) (29); Non-SMA, non-severe malarial anemia (11.0 g/dL>Hb≥6.0 g/dL, with any density parasitemia). Red blood cell (RBC) count; White blood cell (WBC) count. ^aStatistical significance determined by Chi-square analysis. ^bStatistical significance determined by Mann-Whitney U test.
Table 2. Distribution of SCGF -539C/T promoter variants in children with malaria.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Non-SMA</th>
<th>SMA</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of participants</td>
<td>302</td>
<td>184</td>
</tr>
<tr>
<td>SCGF -539C/T</td>
<td>CC, n (%)</td>
<td>76 (25.2)</td>
<td>58 (31.5)</td>
</tr>
<tr>
<td></td>
<td>CT, n (%)</td>
<td>108 (35.8)</td>
<td>71 (38.6)</td>
</tr>
<tr>
<td></td>
<td>TT, n (%)</td>
<td>118 (39.1)</td>
<td>55 (29.9)</td>
</tr>
<tr>
<td></td>
<td>P(C)=0.430</td>
<td>P(C)=0.508</td>
<td></td>
</tr>
</tbody>
</table>

Data are presented as proportions (n, %). Abbreviations: SMA, severe malarial anemia (Hb<6.0 g/dL, with any density parasitemia) (29); Non-SMA, non-severe malarial anemia (11.0 g/dL>Hb≥6.0 g/dL, with any density parasitemia); SCGF, Stem cell growth factor; P(C), frequency of wild-type allele in the population. *Statistical significance determined by Chi-square analysis. There was a non-significant difference in the distribution of -539 genotypes between the two groups (P=0.099).
Table 3. Relationship between SCGF -539C/T promoter variants and susceptibility to SMA.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>SMA (Hb<6.0 g/dL)</th>
<th></th>
<th></th>
<th>SMA (Hb<5.0 g/dL)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>95%CI</td>
<td>P</td>
<td>OR</td>
<td>95%CI</td>
<td>P</td>
</tr>
<tr>
<td>CC</td>
<td>1.00</td>
<td></td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>0.84</td>
<td>0.52 – 1.36</td>
<td>0.483</td>
<td>0.88</td>
<td>0.50 – 1.53</td>
<td>0.643</td>
</tr>
<tr>
<td>TT</td>
<td>0.57</td>
<td>0.34 – 0.94</td>
<td>0.027</td>
<td>0.51</td>
<td>0.33 – 0.95</td>
<td>0.030</td>
</tr>
</tbody>
</table>

Parasitemic children (n=486) were categorized according to a modified definition of SMA based on age- and geographically-matched Hb concentrations (i.e., Hb<6.0 g/dL, with any density parasitemia) (29) and the WHO definition of SMA (i.e., Hb<5.0 g/dL, with any density parasitemia). Odds Ratios (OR) and 95% confidence intervals (CI) were determined using multivariate logistic regression controlling for age, gender, HIV-1 status, bacteremia, sickle cell trait (HbAS), and G6PD deficiency and α-thalassemia status.
FIGURE LEGENDS

Figure 1. **Relationship between SCGF and anemia.**

Plasma was obtained from children with acute malaria and SCGF concentrations were determined by ELISA. (A) Correlation between SCGF concentrations and Hb levels in parasitemic children (n=83) determined by Spearman’s correlation coefficient. (B) Association between SCGF levels and anemia severity in parasitemic children with SMA (n=25) and non-SMA (n=58). Boxes represent the interquartile range, the line through the box is the median, and whiskers show 10th and 90th percentiles. Statistical significance was determined by the Mann-Whitney U test.

Figure 2. **Functional association between SCGF -539C/T promoter variants and SCGF.**

(A) Circulating SCGF levels were measured using ELISA. Data are shown for the CC (n=17), CT (n=33), and TT (n=33) genotypes. Data are presented as box-plots, where the box represents the interquartile range, the line through the box is the median, and whiskers show the 10th and 90th percentiles. Across group comparisons were determined by Kruskal-Wallis tests followed by Mann-Whitney U tests for pairwise comparison. Presence of the TT genotype associated with significantly higher circulating SCGF levels relative to individuals with CC genotype (P=0.018). (B) PBMCs were isolated from peripheral blood (<3.0 mL) and cultured (1x10^6 cells/mL) in serum containing media. Supernatants were obtained at 48 hrs for SCGF determination by ELISA. Children were stratified according to genotypes: CC (n=11); CT (n=13); and TT (n=13). Data are presented as box-plots, where the box represents the interquartile range, the line through the box is the median, and whiskers show the 10th and 90th percentiles. Statistical significance was determined by Mann-Whitney U test. Presence of the TT genotype associated with significantly higher culture supernatant SCGF levels relative to individuals with CC genotype (P=0.041).
Figure 3. Association between SCGF variants and erythropoiesis.

Plasma was obtained from children with acute malaria and SCGF concentrations were determined by ELISA. (A) Correlation between SCGF concentrations and reticulocyte production index (RPI) levels in children with anemia (n=70). Relationships between SCGF and RPI were determined by Spearman’s correlation coefficient. (B) Association between SCGF -539C/T promoter variants and the RPI in anemic children. Data are shown for the CC (n=14), CT (n=29), and TT (n=27) genotypes. Boxes represent the interquartile range, the line through the box is the median, while whiskers show 10th and 90th percentiles. Across group comparisons were determined by Kruskal-Wallis tests followed by Mann-Whitney U tests for pairwise comparison. Presence of the TT genotype associated with significantly higher RPI relative to individuals with CC genotype (P=0.005).
Figure 1

A

B
Figure 2

A

B

Circulating SCGF levels (ng/mL)

Supernatant SCGF levels (ng/mL)

SCGF -539C/T

P=0.018

P=0.041
Figure 3

A

B

Reticulocyte production index (RPI)

CC CT TT

SCGF-539C/T

P=0.005