Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Effect of oral tetracycline, the microbial flora, and the athymic state on gastrointestinal colonization and infection of BALB/c mice with Candida albicans.

P B Helstrom, E Balish
P B Helstrom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Balish
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Scanning electron microscopy, light microscopy, and quantitative culture of microorganisms in intestinal contents were used to determine the effects of oral tetracycline, the bacterial flora of conventionally reared animals (conventional), and thymus-dependent immune competency on the capacity of Candida albicans to colonize and infect the gastrointestinal tract of four groups of mice: thymus-intact conventional mice, conventional athymic mice, flora-defined athymic mice, and thymus-intact bacteria-free mice. Thymus-intact conventional mice without antibiotic treatment began to shed C. albicans less than 48 h after oral yeast challenge and were devoid of detectable yeast by day 16. Tetracycline altered the bacterial flora qualitatively and quantitatively, allowing C. albicans to colonize in less than 48 h and to persist in the gut tract for 32 days. Only 2 of 72 of these conventional mice developed candidiasis (hyphal infection). Although tetracycline altered the bacterial flora of conventional athymic (nude) mice, it was not required to allow C. albicans to colonize their gut tract to levels significantly higher than those in thymus-intact conventional mice. All conventional nude mice were consistently colonized and 14 of 24 animals showed an increased yeast colonization of the keratinized stomach, but only 3 of 24 developed gastric candidiasis. Flora-defined athymic (nude) mice had significantly lower aerobic bacterial levels and significantly higher C. albicans levels in the gut contents than conventional athymic mice. The flora-defined nude mice, however, developed gastric candidiasis by day 5. Thymus-intact bacteria-free mice were uniformly colonized and infected with C. albicans less than 48 h after oral challenge regardless of tetracycline treatment. Populations of C. albicans in the gut of bacteria-free mice were significantly higher than in the gut tract of the thymus-intact conventional or athymic mice. Gastric mycelial infection was detected in 8 of 10 bacteria-free animals 2 days after oral challenge. By 32 days, 45 of 50 mice of both tetracycline-treated and control bacteria-free groups were infected with C. albicans. These data indicate that a competive bacteria flora is more effective than an intact immune system in preventing gastric candidiasis and that an immune deficiency may allow increased yeast colonization of the keratinized and glandular stomach epithelium. Tetracycline did not appear to enhance the invasiveness or pathogenicity of C. albicans in mice even though it facilitates yeast-phase gut colonization in conventionally reared mice.

PreviousNext
Back to top
Download PDF
Citation Tools
Effect of oral tetracycline, the microbial flora, and the athymic state on gastrointestinal colonization and infection of BALB/c mice with Candida albicans.
P B Helstrom, E Balish
Infection and Immunity Mar 1979, 23 (3) 764-774; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Effect of oral tetracycline, the microbial flora, and the athymic state on gastrointestinal colonization and infection of BALB/c mice with Candida albicans.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Effect of oral tetracycline, the microbial flora, and the athymic state on gastrointestinal colonization and infection of BALB/c mice with Candida albicans.
P B Helstrom, E Balish
Infection and Immunity Mar 1979, 23 (3) 764-774; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522