Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Oral Microbiology and Immunology

Energy Metabolism in Capnocytophaga ochracea

Robert Calmes, G. W. Rambicure, W. Gorman, Thomas T. Lillich
Robert Calmes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. W. Rambicure
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. Gorman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas T. Lillich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Among the microflora of the gingival sulcus are members of the genus Capnocytophaga which have been implicated as possible etiological agents of juvenile periodontitis and systemic infectious diseases. In this study, the pathway used by C. ochracea strain 25 for generating energy from glucose was investigated. When grown in a complex medium supplemented with glucose and NaHCO3, the major end products formed were acetate (4.6 mmol), succinate (11.0 mmol), pyruvate (4.3 mmol), and oxalacetate (3.6 mmol), and the molar growth yield was 58. Addition of yeast extract to the growth medium caused (i) an increase in acetate (9.2 mmol) and succinate (14.3 mmol), (ii) a decrease in pyruvate (0 mmol) and oxalacetate (1.1 mmol), and (iii) the molar growth yield increased to 75. Glucose was transported by a phosphoenolpyruvate:phosphotransferase system and then catabolized to phosphoenolpyruvate by enzymes of the Embden-Meyerhof-Parnas pathway. No activities were detected for the key enzymes of the Warburg-Dickens, Entner-Douderoff, or hexose phosphoketolase pathways. During growth in the yeast extract-supplemented medium, approximately 37% of the phosphoenolpyruvate carbon was converted to acetate by pyruvate kinase, a pyruvate-decarboxylating enzyme activity, and acetate kinase; the remaining 63% was converted to succinate via phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate hydratase, and fumarate reductase.

PreviousNext
Back to top
Download PDF
Citation Tools
Energy Metabolism in Capnocytophaga ochracea
Robert Calmes, G. W. Rambicure, W. Gorman, Thomas T. Lillich
Infection and Immunity Aug 1980, 29 (2) 551-560; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Energy Metabolism in Capnocytophaga ochracea
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Energy Metabolism in Capnocytophaga ochracea
Robert Calmes, G. W. Rambicure, W. Gorman, Thomas T. Lillich
Infection and Immunity Aug 1980, 29 (2) 551-560; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522