Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Resistance of O-acetylated gonococcal peptidoglycan to human peptidoglycan-degrading enzymes.

R S Rosenthal, W J Folkening, D R Miller, S C Swim
R S Rosenthal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W J Folkening
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D R Miller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S C Swim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Two naturally occurring forms of gonococcal peptidoglycan (PG) were tested for their susceptibility to human PG hydrolases. Purified 3H-labeled PG substituted extensively with O-acetyl derivatives (O-PG; from Neisseria gonorrhoeae FA19) and 14C-labeled O-acetyl-deficient PG (non-O-PG; from N. gonorrhoeae RD5) were mixed together and treated with either normal human sera (NHS) or with lysozyme purified from human polymorphonuclear leukocytes (PMN-LZ). The initial rate of hydrolysis of O-PG by NHS or by PMN-LZ was two- to fourfold less than that of its non-O-PG counterpart in the same tube. When the reactions were allowed to go to completion. NHS solubilized both PGs completely, whereas PMN-LZ solubilized all of the non-O-PG and left ca. 60% of the O-PG insoluble. The PMN-LZ-soluble fraction of O-PG consisted largely of glycosidically linked fragments with molecular weights greater than ca. 10(4), whereas the corresponding non-O-PG was degraded to lower-molecular-weight fragments, exclusively. At completion, NHS hydrolyzed both PGs to fragments whose size was equal to or smaller than that of the free disaccharide unit of PG, suggesting that human sera contain a peptide-splitting (amidase) activity and a glycosidase activity, in addition to that of the well-known muramidase. NHS also promoted the release of high-molecular-weight PG fragments from intact gonococci. The persistence of human hydrolase-resistant PG in the form of soluble macromolecular fragments may potentiate the biological effects of gonococcal PG in vivo.

PreviousNext
Back to top
Download PDF
Citation Tools
Resistance of O-acetylated gonococcal peptidoglycan to human peptidoglycan-degrading enzymes.
R S Rosenthal, W J Folkening, D R Miller, S C Swim
Infection and Immunity Jun 1983, 40 (3) 903-911; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Resistance of O-acetylated gonococcal peptidoglycan to human peptidoglycan-degrading enzymes.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Resistance of O-acetylated gonococcal peptidoglycan to human peptidoglycan-degrading enzymes.
R S Rosenthal, W J Folkening, D R Miller, S C Swim
Infection and Immunity Jun 1983, 40 (3) 903-911; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522