ABSTRACT
The kinetics of attachment and ingestion of Chlamydia trachomatis serotype L1 by monolayers of McCoy cells were studied by using a method that discriminated between attachment and uptake. When about 1% of the McCoy cells was infected, the proteinase K-resistant chlamydial fraction, regarded as ingested chlamydiae, reached a constant value after about 3 h of incubation at 37 degrees C. Uptake of chlamydiae at 4 degrees C could not be demonstrated. The attached and ingested chlamydial fractions were constant over an eightfold increase in chlamydial inoculum. Chitobiose and chitotriose, the di- and trisaccharides of N-acetyl-D-glucosamine, reduced the association of C. trachomatis serotype L1 with McCoy cells. Higher concentrations of chitobiose also selectively inhibited ingestion of chlamydiae. A corresponding effect of chitobiose was also observed on the number of chlamydial inclusions. Wheat germ agglutinin, specific for N-acetyl-D-glucosamine residues, reduced the association of chlamydiae when incubated at 4 degrees C, but not at 37 degrees C. A small inhibiting effect of concanavalin A on association of chlamydiae, but no effect of the corresponding carbohydrates, indicates a nonspecific effect on chlamydial attachment of this lectin. These results suggest that beta 1 leads to 4-linked oligomers of N-acetyl-D-glucosamine are important in the specificity of attachment of C. trachomatis to McCoy cells.