Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Natural and recombinant interferons inhibit epithelial cell invasion by Shigella spp.

D W Niesel, C B Hess, Y J Cho, K D Klimpel, G R Klimpel
D W Niesel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C B Hess
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y J Cho
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K D Klimpel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G R Klimpel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The effect of natural and recombinant interferons (IFNs) on the abilities of Shigella flexneri, S. sonnei, and Salmonella typhimurium to invade different human and murine cells was examined. Pretreatment of cell monolayers with natural and recombinant IFNs reduced the number of Shigella-infected cells in a dose-dependent manner. Establishment of an anti-invasive cellular state was time dependent, requiring 10 h for 50% inhibition of bacterial invasion. The inhibitory effect of IFN was species specific, with human or murine IFN effective against homologous but not heterologous cells. Gamma IFN was slightly more potent than alpha IFN at inhibiting bacterial invasion. Inhibition of Shigella invasion was dependent on the challenge dose of bacteria. Little inhibition of invasion was seen when cells were pretreated with low concentrations of IFN and challenged with high multiplicities of infection of Shigella sp. In contrast to Shigella invasion, the maximum inhibitory effect of IFN on Salmonella invasion of cells was observed at low levels (5 to 50 U) of IFN. These results suggest that Shigella and Salmonella invasions occur at unique sites on eucaryotic cells or by different penetration mechanisms. More importantly, these data suggest that IFN may play a significant role in host defense against Shigella and Salmonella infections.

PreviousNext
Back to top
Download PDF
Citation Tools
Natural and recombinant interferons inhibit epithelial cell invasion by Shigella spp.
D W Niesel, C B Hess, Y J Cho, K D Klimpel, G R Klimpel
Infection and Immunity Jun 1986, 52 (3) 828-833; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Natural and recombinant interferons inhibit epithelial cell invasion by Shigella spp.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Natural and recombinant interferons inhibit epithelial cell invasion by Shigella spp.
D W Niesel, C B Hess, Y J Cho, K D Klimpel, G R Klimpel
Infection and Immunity Jun 1986, 52 (3) 828-833; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522