Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells.

R Arroyo, J F Alderete
R Arroyo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J F Alderete
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The role of cysteine proteinases in adherence of Trichomonas vaginalis NYH 286 to HeLa and human vaginal epithelial cells was evaluated. Only pretreatment of trichomonads, but not epithelial cells, with N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK), an inhibitor of trichomonad cysteine proteinases, greatly diminished the ability of T. vaginalis to recognize and bind to epithelial cells. Leupeptin and L-1-tosylamide-2-phenylethyl chloromethyl ketone, other cysteine proteinase inhibitors, also decreased T. vaginalis cytadherence. Parasites incubated with TLCK and washed extensively still did not adhere to cells at levels equal to those seen for control trichomonads treated with phosphate-buffered saline or culture medium alone. Exposure of TLCK-treated organisms with other cysteine proteinases restored cytadherence levels, indicating that proteinase action on the parasite surface is prerequisite for host cell attachment. Concentrations of TLCK which inhibited cytadherence did not alter the metabolism of T. vaginalis, as determined by metabolic labeling of trichomonad proteins; the protein patterns of T. vaginalis in the presence and absence of TLCK were identical. Kinetics of TLCK-mediated inhibition of cytadherence of other T. vaginalis isolates with different levels of epithelial-cell parasitism were similar to the concentration-dependent inhibition seen for isolate NYH 286. Incubation of TLCK-treated, washed organisms in growth medium resulted in regeneration of adherence. Finally, treatment of T. vaginalis organisms with proteinase inhibitors for abrogation of cytadherence effectively rendered the trichomonads unable to kill host cells, which is consistent with the contact-dependent nature of host cytotoxicity. These data show for the first time the involvement of T. vaginalis cysteine proteinases in parasite attachment to human epithelial cells. These results have implications for future pharmacologic intervention at a key step in infection.

PreviousNext
Back to top
Download PDF
Citation Tools
Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells.
R Arroyo, J F Alderete
Infection and Immunity Oct 1989, 57 (10) 2991-2997; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells.
R Arroyo, J F Alderete
Infection and Immunity Oct 1989, 57 (10) 2991-2997; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522