Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Comparison of granule proteins from human polymorphonuclear leukocytes which are bactericidal toward Pseudomonas aeruginosa.

K R Wasiluk, K M Skubitz, B H Gray
K R Wasiluk
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K M Skubitz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B H Gray
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Killing of Pseudomonas aeruginosa by a 55-kDa bactericidal protein (BP 55), a 30-kDa protein (BP 30), cathepsin G, elastase, and proteinase 3 has been compared. P. aeruginosa was resistant to killing by elastase and proteinase 3. BP 55 at a 50% lethal dose (LD50) of 0.23 micrograms of protein per 5 x 10(6) bacteria per ml killed P. aeruginosa and was far more active than BP 30 and cathepsin G. The LD50s of BP 30 and cathepsin G were 16.9 and 28.3 micrograms of protein per 5 x 10(6) bacteria per ml, respectively. Preincubation of BP 55 or BP 30 with lipopolysaccharide (LPS) from P. aeruginosa inhibited bactericidal activity. The N-terminal amino acid sequence of BP 55 and BP 30 revealed no relationship between the two proteins. However, a monoclonal antibody (AHN-15) reacted with both proteins by Western immunoblot. The bactericidal activity of cathepsin G toward P. aeruginosa appeared to be dependent on the availability of the active site of the enzyme; bactericidal activity was inhibited by phenylmethylsulfonyl fluoride (PMSF) and by the specific cathepsin G inhibitor, Z-Gly-Leu-Phe-CH2Cl. The enzyme and bactericidal activities of cathepsin G were also inhibited by LPS from P. aeruginosa. LPS from P. aeruginosa was shown to be a competitive inhibitor of the enzyme activity of cathepsin G. Elastase enzyme activity was also inhibited noncompetitively by LPS, but the enzyme was not bactericidal. We have concluded that all three bactericidal proteins (BP 55, BP 30, and cathepsin G) may bind to the LPS of the outer membrane of P. aeruginosa. It appears that the enzyme active site must be available for cathepsin G to kill P. aeruginosa and that the active site may be involved in the binding of cathepsin G to P. aeruginosa.

PreviousNext
Back to top
Download PDF
Citation Tools
Comparison of granule proteins from human polymorphonuclear leukocytes which are bactericidal toward Pseudomonas aeruginosa.
K R Wasiluk, K M Skubitz, B H Gray
Infection and Immunity Nov 1991, 59 (11) 4193-4200; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Comparison of granule proteins from human polymorphonuclear leukocytes which are bactericidal toward Pseudomonas aeruginosa.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Comparison of granule proteins from human polymorphonuclear leukocytes which are bactericidal toward Pseudomonas aeruginosa.
K R Wasiluk, K M Skubitz, B H Gray
Infection and Immunity Nov 1991, 59 (11) 4193-4200; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522