Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Role of Vibrio cholerae neuraminidase in the function of cholera toxin.

J E Galen, J M Ketley, A Fasano, S H Richardson, S S Wasserman, J B Kaper
J E Galen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J M Ketley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Fasano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S H Richardson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S S Wasserman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J B Kaper
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Vibrio cholerae neuraminidase (NANase) is hypothesized to act synergistically with cholera toxin (CT) and increase the severity of a secretory response by increasing the binding and penetration of CT to enterocytes. To test this hypothesis, the NANase gene (nanH) from V. cholerae Ogawa 395 was first cloned and sequenced. Isogenic wild-type and NANase- V. cholerae 395 strains were then constructed by using suicide vector-mediated mutagenesis. The influence of NANase on CT binding and penetration was examined in vitro by using culture filtrates from these isogenic strains. Fluorescence due to binding of fluorescein-conjugated CT to C57BL/6 and C3H mouse fibroblasts exposed to NANase+ filtrates increased five- and eightfold, respectively, relative to that with NANase- filtrates. In addition, NANase+ filtrates increased the short-circuit current measured in Ussing chambers 65% relative to that with NANase- filtrates, although this difference decreased as production of CT increased. The role of NANase in V. cholerae pathogenesis was examined in vivo by intragastric inoculation of the isogenic strains into CD1 suckling mice. No difference in fluid accumulation ratios was seen at doses of 10(4) to 10(8) CFU, but NANase+ strains produced 18% higher fluid accumulation ratios at 10(9) CFU than NANase- strains when inoculated into nonfasted suckling mice. It is concluded that NANase plays a subtle but significant role in the binding and uptake of CT by susceptible cells under defined conditions.

PreviousNext
Back to top
Download PDF
Citation Tools
Role of Vibrio cholerae neuraminidase in the function of cholera toxin.
J E Galen, J M Ketley, A Fasano, S H Richardson, S S Wasserman, J B Kaper
Infection and Immunity Feb 1992, 60 (2) 406-415; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of Vibrio cholerae neuraminidase in the function of cholera toxin.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Role of Vibrio cholerae neuraminidase in the function of cholera toxin.
J E Galen, J M Ketley, A Fasano, S H Richardson, S S Wasserman, J B Kaper
Infection and Immunity Feb 1992, 60 (2) 406-415; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522