Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

In vivo inhibition of lipopolysaccharide-induced lethality and tumor necrosis factor synthesis by Rhodobacter sphaeroides diphosphoryl lipid A is dependent on corticosterone induction.

S H Zuckerman, N Qureshi
S H Zuckerman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Qureshi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Diphosphoryl lipid A from the lipopolysaccharide (LPS) of Rhodobacter sphaeroides (Rs-DPLA) has been demonstrated to block in mice and guinea pigs the increase in the serum tumor necrosis factor (TNF) response induced by highly purified deep rough chemotype LPS from Escherichia coli D31m4 (ReLPS). The present study was designed to determine the role of corticosterone induction by Rs-DPLA and its effect on TNF regulation and survival in lethal endotoxin shock models and to evaluate the ability of Rs-DPLA to induce endotoxin tolerance. Administration of a 100-fold excess of Rs-DPLA 1 h prior to ReLPS administration inhibited the characteristic peak in serum TNF levels induced by LPS. Inhibition was apparent in normal and D-galactosamine (GalN)-sensitized mice and occurred at the pretranslational level, as splenic TNF and interleukin-1 beta mRNAs were present in lower amounts in LPS-stimulated mice pretreated with Rs-DPLA. Consistent with its effects in reducing serum TNF levels, Rs-DPLA pretreatment protected GalN-sensitized mice from a lethal ReLPS challenge. In contrast, Rs-DPLA did not inhibit the increase in the serum TNF response or protect against a lethal ReLPS challenge in parallel experiments with adrenalectomized (Adrex) mice, for which the 50% lethal dose of ReLPS was comparable to that for GalN-sensitized mice. Furthermore, Rs-DPLA appeared to prime Adrex animals and increase the magnitude of the serum TNF response to a suboptimal LPS stimulus. Priming by Rs-DPLA, however, was not observed in normal or GalN-sensitized mice. Although Rs-DPLA by itself was nontoxic and unable to elevate serum TNF levels in any of the models investigated, it did induce a significant increase in the serum corticosterone response and was capable of inducing endotoxin tolerance in normal mice. The inability of Rs-DPLA to protect Adrex mice from a lethal ReLPS stimulus or to inhibit the increase in the serum TNF response suggests that the protective effect of Rs-DPLA in normal or GalN-sensitized animals occurs through corticosterone induction. These results support the concept that endogenous glucocorticoids can modulate the endotoxic effects of LPS by inhibiting the synthesis of inflammatory cytokines.

PreviousNext
Back to top
Download PDF
Citation Tools
In vivo inhibition of lipopolysaccharide-induced lethality and tumor necrosis factor synthesis by Rhodobacter sphaeroides diphosphoryl lipid A is dependent on corticosterone induction.
S H Zuckerman, N Qureshi
Infection and Immunity Jul 1992, 60 (7) 2581-2587; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
In vivo inhibition of lipopolysaccharide-induced lethality and tumor necrosis factor synthesis by Rhodobacter sphaeroides diphosphoryl lipid A is dependent on corticosterone induction.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
In vivo inhibition of lipopolysaccharide-induced lethality and tumor necrosis factor synthesis by Rhodobacter sphaeroides diphosphoryl lipid A is dependent on corticosterone induction.
S H Zuckerman, N Qureshi
Infection and Immunity Jul 1992, 60 (7) 2581-2587; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522