Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

The interleukin-1 receptor antagonist can either reduce or enhance the lethality of Klebsiella pneumoniae sepsis in newborn rats.

J Mancilla, P García, C A Dinarello
J Mancilla
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P García
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C A Dinarello
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Klebsiella pneumoniae, a worldwide cause of nosocomial infections, is one of the most common causes of death in newborns in nurseries. In this study, we investigated the role of interleukin-1 (IL-1) in an experimental animal model of neonatal sepsis, using a natural antagonist of IL-1 receptors, the IL-1 receptor antagonist (IL-1Ra), to block IL-1's effects in neonatal Klebsiella sepsis in the absence of antibiotic treatment. Newborn Wistar-Kyoto rats were injected intraperitoneally with a single dose (10 mg/kg) of either IL-1Ra (n = 43) or human serum albumin as a control (n = 40). At the same time, a 50% lethal dose of K. pneumoniae was injected subcutaneously. No antibiotics were given at any time. After 10 days, survival was 60% for the albumin group and 80% for the IL-1Ra group (P < 0.01). IL-1Ra treatment also afforded protection when the dose of bacteria was increased sixfold (P < 0.01). There were two episodes of leukopenia in the control group, which were suppressed by IL-1Ra (P < 0.01 and P < 0.001). IL-1 and IL-6 levels were lower in the IL-1Ra-treated group (P < 0.05 and P < 0.001, respectively). No differences between the two groups were observed in the number of bacteria in cultures of the blood, lungs, liver, or spleen. When IL-1Ra (10 mg/kg) was given both at time zero and 24 h after bacterial challenge, lethality was significantly increased (P < 0.01). Single doses of IL-1Ra of from 20 to 40 mg/kg progressively increased lethality compared with controls (P < 0.01) in both Wistar-Kyoto and Sprague-Dawley strain rats. In the same model, low doses of IL-1 itself (0.4 ng per rat), given 24 h prior to bacterial challenge, afforded protection (P < 0.001). These studies suggest that, in the absence of antibiotics, partial blockade of IL-1 receptors improves survival, whereas a longer or greater blockade increases lethality in newborn rats infected with K. pneumoniae.

PreviousNext
Back to top
Download PDF
Citation Tools
The interleukin-1 receptor antagonist can either reduce or enhance the lethality of Klebsiella pneumoniae sepsis in newborn rats.
J Mancilla, P García, C A Dinarello
Infection and Immunity Mar 1993, 61 (3) 926-932; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The interleukin-1 receptor antagonist can either reduce or enhance the lethality of Klebsiella pneumoniae sepsis in newborn rats.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The interleukin-1 receptor antagonist can either reduce or enhance the lethality of Klebsiella pneumoniae sepsis in newborn rats.
J Mancilla, P García, C A Dinarello
Infection and Immunity Mar 1993, 61 (3) 926-932; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522