Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • Log out
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Establishment of an antitoxoplasma state by stable expression of mouse indoleamine 2,3-dioxygenase.

A Habara-Ohkubo, T Shirahata, O Takikawa, R Yoshida
A Habara-Ohkubo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Shirahata
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
O Takikawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Yoshida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Indoleamine 2,3-dioxygenase (IDO), a tryptophan-degrading enzyme, is inducible by various interferons (IFNs). IDO-mediated tryptophan degradation, but not the formation of IDO-catalyzed tryptophan metabolites, has been suggested as a mechanism for the antiparasitic action of IFN-gamma. To determine whether the IFN-gamma-induced IDO alone is sufficient for establishing the antiparasitic state, we constructed a mouse IDO expression plasmid containing a heavy metal-responsive metallothionein promoter and obtained a stable transformant (C6) by transfection of this plasmid into mouse rectal cancer (CMT-93) cells. In the presence of 100 microM ZnSO4, C6 cells yielded a high level of IDO; and after a 2-day culture period, the enzyme induction resulted in complete depletion of tryptophan from the culture medium. Under these conditions, the growth of Toxoplasma gondii in C6 cells infected with the organisms on day 3 after enzyme induction was completely blocked. In the absence of ZnSO4, however, IDO induction was negligible in C6 cells, and T. gondii continued to grow. Furthermore, in a transformant (CC10) carrying an antisense mouse IDO plasmid or in parental CMT-93 cells, IDO was not induced at all even in the presence of 100 microM ZnSO4, and T. gondii continued to grow in these cells as well. These results taken together indicate that complete depletion of tryptophan from the culture by IDO alone is sufficient to establish the antitoxoplasma state in mouse cells.

PreviousNext
Back to top
Download PDF
Citation Tools
Establishment of an antitoxoplasma state by stable expression of mouse indoleamine 2,3-dioxygenase.
A Habara-Ohkubo, T Shirahata, O Takikawa, R Yoshida
Infection and Immunity May 1993, 61 (5) 1810-1813; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Establishment of an antitoxoplasma state by stable expression of mouse indoleamine 2,3-dioxygenase.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
Share
Establishment of an antitoxoplasma state by stable expression of mouse indoleamine 2,3-dioxygenase.
A Habara-Ohkubo, T Shirahata, O Takikawa, R Yoshida
Infection and Immunity May 1993, 61 (5) 1810-1813; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522