Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

An in vitro model for immune control of chlamydial growth in polarized epithelial cells.

J U Igietseme, P B Wyrick, D Goyeau, R G Rank
J U Igietseme
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P B Wyrick
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Goyeau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R G Rank
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

A polarized epithelial culture system and chlamydia-specific T-cell lines and clones were employed to investigate the ability and mechanisms by which T cells control the growth of chlamydiae in epithelial cells. Monolayers of polarized mouse epithelial cells were infected with the Chlamydia trachomatis agent of mouse pneumonitis (MoPn) and then exposed to antigen-stimulated MoPn-specific T-cell lines and clones. The results revealed that in vivo-protective MoPn-specific T-cell lines and clone 2.14-0 were capable of inhibiting the growth of MoPn in polarized epithelial cells. In contrast, the nonprotective MoPn-specific T-cell clone 2.14-3, naive splenic T cells, and a control T-cell clone could not inhibit the growth of MoPn in epithelial cells. Transmission electron microscopic analysis of infected epithelial cells which were exposed to clone 2.14-0 confirmed the absence of an established infection, as deduced from the virtual absence of inclusions in the cells. Antigen-specific activation of clone 2.14-0 was required for the MoPn-inhibitory function, since the absence of antigenic stimulation or stimulation with a heterologous chlamydial agent did not result in MoPn growth inhibition. Activation of clone 2.14-0 resulted in acquisition of the capacity to inhibit growth of both homologous (MoPn) and heterologous chlamydial agents. Close interaction between epithelial cells and clone 2.14-0 was required for the MoPn-inhibitory action, because separation of the cell types by a filter with a pore size of 0.45, 3.0, or even 8.0 microns abrogated MoPn inhibition. Protective T cells may act at close range in the epithelium to control chlamydial growth, possibly involving short-range-acting cytokines. The ability of antigen-stimulated T-cell lines and clones to inhibit chlamydial growth in polarized epithelial cultures could be a useful method for identifying protective T-cell clones and antigenic peptide fragments containing protective epitopes.

PreviousNext
Back to top
Download PDF
Citation Tools
An in vitro model for immune control of chlamydial growth in polarized epithelial cells.
J U Igietseme, P B Wyrick, D Goyeau, R G Rank
Infection and Immunity Aug 1994, 62 (8) 3528-3535; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
An in vitro model for immune control of chlamydial growth in polarized epithelial cells.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
An in vitro model for immune control of chlamydial growth in polarized epithelial cells.
J U Igietseme, P B Wyrick, D Goyeau, R G Rank
Infection and Immunity Aug 1994, 62 (8) 3528-3535; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522