Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Comparative Study | Journal Article | Research Support, U.S. Gov't, P.H.S.

Neisserial porins inhibit human neutrophil actin polymerization, degranulation, opsonin receptor expression, and phagocytosis but prime the neutrophils to increase their oxidative burst.

R Bjerknes, H K Guttormsen, C O Solberg, L M Wetzler
R Bjerknes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H K Guttormsen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C O Solberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L M Wetzler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Porins are trimeric proteins that constitute water-filled pores that allow transmembrane diffusion of small solutes through the outer membrane layer of gram-negative bacteria. The porins are capable of inserting into the membranes of eucaryotic cells, and in the present study we have examined the in vitro effects on neutrophil functions of the following purified porins: meningococcal outer membrane protein classes 1 and 3 and gonococcal outer membrane protein 1B (P1B). The neisserial porins inhibited human neutrophil chemoattractant-induced actin polymerization and degranulation of both primary and secondary granules. The neutrophil expression of immunoglobulin G (IgG) Fc receptors II (Fc gamma RII; CDw32) and III (Fc gamma RIII; CD16), as well as the activation-dependent downregulation of Fc gamma RIII, were reduced by the meningococcal and gonococcal porins. The neisserial porins impaired the upregulation of complement receptors 1 (CD35) and 3 (CD11b) and inhibited the phagocytic capacity of neutrophils, as evaluated by the uptake of meningococci (strain 44/76) in the presence of patient serum containing known amounts of IgG against meningococcal porins. The porins also primed neutrophils to increase their intracellular hydrogen peroxide production in response to FMLP, whereas no such priming was observed if the neutrophil protein kinase C was stimulated directly with phorbol myristate acetate. The neisserial porins influenced neutrophil functions in a time- and concentration-dependent manner. The meningococcal class 1 outer membrane protein and the gonococcal P1B tended to alter neutrophil functions more than the meningococcal class 3 protein. Thus, the neisserial porins inhibited human neutrophil actin polymerization, degranulation, opsonin receptor expression, and phagocytosis but primed the neutrophils to increase their oxidative burst. It remains to be determined whether these in vitro observations reflect mechanisms that may be of importance for the interaction between neutrophils and Neisseria species in vivo.

PreviousNext
Back to top
Download PDF
Citation Tools
Neisserial porins inhibit human neutrophil actin polymerization, degranulation, opsonin receptor expression, and phagocytosis but prime the neutrophils to increase their oxidative burst.
R Bjerknes, H K Guttormsen, C O Solberg, L M Wetzler
Infection and Immunity Jan 1995, 63 (1) 160-167; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neisserial porins inhibit human neutrophil actin polymerization, degranulation, opsonin receptor expression, and phagocytosis but prime the neutrophils to increase their oxidative burst.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Neisserial porins inhibit human neutrophil actin polymerization, degranulation, opsonin receptor expression, and phagocytosis but prime the neutrophils to increase their oxidative burst.
R Bjerknes, H K Guttormsen, C O Solberg, L M Wetzler
Infection and Immunity Jan 1995, 63 (1) 160-167; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522