Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't

Granulation in livers of mice infected with Salmonella typhimurium is caused by superoxide released from host phagocytes.

K Umezawa, N Ohnishi, K Tanaka, S Kamiya, Y Koga, H Nakazawa, A Ozawa
K Umezawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Ohnishi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Tanaka
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Kamiya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Koga
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Nakazawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Ozawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The pathophysiological roles of superoxide (O2.-) at the site of infection of facultative intracellular bacteria were examined in this study. To evaluate the actual in vivo generation of the superoxide, an ex vivo chemiluminescence assay was newly developed. When ICR mice were infected with a sublethal dose (8 x 10(4) CFU) of Salmonella typhimurium, the number of bacteria in the liver reached its peak at 5 days after infection (10(5.05) CFU/g of liver) and decreased thereafter. At 21 days after infection, the bacteria became undetectable. On the other hand, phorbol myristate 13-acetate-stimulated O2.- generation reached a maximum at 7 days after infection (mean photon count, 1,249 cps versus 28.8 cps before infection; n = 4) and decreased thereafter to a level similar to that before infection at 21 days after infection (28.8 cps). Histological examinations revealed that the total area of the lesions reached a peak at 7 days after infection (7.2 x 10(4) microns 2/10 visual fields). In the early phase, a microabscess with infiltration of polymorphonuclear cells was noted, and then, in the late stage, the lesion was replaced by granulation with mononuclear cell infiltration. When microscopic lesions were measured histologically, a significant correlation between the area of the lesions and phorbol myristate 13-acetate-stimulated O2.- generation was observed, which suggested that superoxide was responsible for the generation of the lesions. Modified superoxide dismutase, i.e., alpha-4-([6-(N-maleimido)hexanoyloxymethyl] cumyl)half-butyl-esterified poly(stylrene-co-malelic acid)-conjugated superoxide dismutase (SM-SOD), was then applied. When SM-SOD was administered to suppress the O2.- generation in vivo, the number of bacteria increased (10(6.1) CFU). However, the lesion formation was inhibited (total lesion area, 0.3 x 10(4) microns 2). These results suggest that the establishment of the microabscess and granuloma formation after S. typhimurium infection is not due to the bacteria per se but rather to the O2.- from the host's phagocytes. Two aspects of the O2.-, i.e., the bactericidal role and the tissue-injurious effect, were clearly demonstrated in this study. Therefore, the information obtained from these results is useful in designing treatment strategy for similar kinds of infection.

PreviousNext
Back to top
Download PDF
Citation Tools
Granulation in livers of mice infected with Salmonella typhimurium is caused by superoxide released from host phagocytes.
K Umezawa, N Ohnishi, K Tanaka, S Kamiya, Y Koga, H Nakazawa, A Ozawa
Infection and Immunity Nov 1995, 63 (11) 4402-4408; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Granulation in livers of mice infected with Salmonella typhimurium is caused by superoxide released from host phagocytes.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Granulation in livers of mice infected with Salmonella typhimurium is caused by superoxide released from host phagocytes.
K Umezawa, N Ohnishi, K Tanaka, S Kamiya, Y Koga, H Nakazawa, A Ozawa
Infection and Immunity Nov 1995, 63 (11) 4402-4408; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522