Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • Log out
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article

Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection.

R P Morrison, K Feilzer, D B Tumas
R P Morrison
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Feilzer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D B Tumas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Mice with disrupted beta 2-microglobulin (beta 2m-/-), I-A (class II-/-), or CD4 (CD4-/-) genes were examined for their capacity to resolve Chlamydia trachomatis genital tract infection. C57BL/6 and beta 2m-/- mice resolved infection similarly and were culture negative by 4 to 5 weeks following infection. Conversely, major histocompatibility complex (MHC) class II-/- mice failed to resolve infection, and CD4-/- mice showed a significant delay (2 weeks). Secondary challenge of C57BL/6, beta 2m-/-, and CD4-/- mice established that acquired protective immunity, which was characterized by an infection of shortened duration and reduced shedding of infectious organisms, developed. Serological analysis of C57BL/6 and beta 2m-/- mice by enzyme-linked immunosorbent assays revealed no striking differences in the immunoglobulin subclass specificity of the anti-Chlamydia response, although some differences were observed in the magnitude of the immunoglobulin G2a (IgG2a) and IgG2b responses. Class II-/- mice produced lower-titered serum anti-Chlamydia antibodies of all isotypes. The serum antibody responses of CD4-/- mice were similar to those of C57BL/6 mice, except that the anti-Chlamydia IgA response was delayed by approximately 3 weeks. Analysis of vaginal washes for Chlamydia-reactive antibodies revealed the presence of IgG2a, IgG2b, and IgA in C57BL/6 and beta 2m-/- mice and primarily of IgA in CD4-/- mice. Vaginal washes from class II-/- mice were consistently antibody negative. Interestingly, the Chlamydia-specific IgA response in the vaginal washes of CD4-/- mice was delayed, but its appearance coincided with decreased shedding of infectious organisms and resolution of infection. Our results demonstrate that MHC class II-restricted T-cell responses are necessary for the development of protective immunity to Chlamydia genital tract infection and that local (vaginal) anti-Chlamydia IgA antibody coincides with the resolution of infection. A substantive role for MHC class I-restricted T-cell responses in protective immunity to Chlamydia genital tract infection was not confirmed.

PreviousNext
Back to top
Download PDF
Citation Tools
Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection.
R P Morrison, K Feilzer, D B Tumas
Infection and Immunity Dec 1995, 63 (12) 4661-4668; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
Share
Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection.
R P Morrison, K Feilzer, D B Tumas
Infection and Immunity Dec 1995, 63 (12) 4661-4668; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522