Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Infection and Immunity
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About IAI
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
In Vitro | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.

Level of receptor-associated protein moderates cellular susceptibility to pseudomonas exotoxin A.

D Mucci, J Forristal, D Strickland, R Morris, D Fitzgerald, C B Saelinger
D Mucci
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Forristal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Strickland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Morris
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Fitzgerald
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C B Saelinger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Pseudomonas exotoxin A (PE) enters mammalian cells via a receptor-mediated endocytic pathway. The initial step in this pathway is binding to the multiligand receptor termed the alpha 2-macroglobulin receptor/low-density lipoprotein receptor-related protein (LRP). Binding of toxin, and of the many other ligands that bind to LRP, is blocked by the addition of a 39-kDa receptor-associated protein (RAP). Here we show that approximately 40% of the cell-associated LRP is on the surface of toxin-sensitive mouse LM fibroblasts and thus accessible for toxin internalization. The remainder is located intracellularly, primarily in the Golgi region. Mammalian cells exhibit a wide range of sensitivity to PE. To investigate possible reasons for this, we examined the expression levels of both LRP and RAP. Results from a variety of cell lines indicated that there was a positive correlation between LRP expression and toxin sensitivity. In the absence of LRP, cells were as much as 200-fold more resistant to PE compared with sensitive cells. A second group of resistant cells expressed LRP but had a high level of RAP. Thus, a toxin-resistant phenotype would be expected when cells expressed either low levels of LRP or high levels of LRP in the presence of high levels of RAP. We hypothesize that RAP has a pivotal role in moderating cellular susceptibility to PE.

PreviousNext
Back to top
Download PDF
Citation Tools
Level of receptor-associated protein moderates cellular susceptibility to pseudomonas exotoxin A.
D Mucci, J Forristal, D Strickland, R Morris, D Fitzgerald, C B Saelinger
Infection and Immunity Aug 1995, 63 (8) 2912-2918; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Infection and Immunity article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Level of receptor-associated protein moderates cellular susceptibility to pseudomonas exotoxin A.
(Your Name) has forwarded a page to you from Infection and Immunity
(Your Name) thought you would be interested in this article in Infection and Immunity.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Level of receptor-associated protein moderates cellular susceptibility to pseudomonas exotoxin A.
D Mucci, J Forristal, D Strickland, R Morris, D Fitzgerald, C B Saelinger
Infection and Immunity Aug 1995, 63 (8) 2912-2918; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About IAI
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #IAIjournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0019-9567; Online ISSN: 1098-5522